Artificial microtubules for rapid and collective transport of magnetic microcargoes

微管 计算机科学 桥接(联网) 纳米技术 纳米机器人学 上游(联网) 活性物质 药物输送 材料科学 生物 细胞生物学 计算机网络
作者
Hongri Gu,Emre Hanedan,Quentin Boehler,Tian‐Yun Huang,Arnold J. T. M. Mathijssen,Bradley J. Nelson
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (8): 678-684 被引量:32
标识
DOI:10.1038/s42256-022-00510-7
摘要

Directed transport of microcargoes is essential for living organisms as well as for applications in microrobotics, nanotechnology and biomedicine. Existing delivery technologies often suffer from low speeds, limited navigation control and dispersal by cardiovascular flows. In cell biology, these issues are largely overcome by cytoskeletal motors that carry vesicles along microtubule highways. Thus inspired, here we developed an artificial microtubule (AMT), a structured microfibre with embedded micromagnets that serve as stepping stones to guide particles rapidly through flow networks. Compared with established techniques, the microcargo travels an order of magnitude faster using the same driving frequency, and dispersal is mitigated by a strong dynamic anchoring effect. Even against strong fluid flows, the large local magnetic-field gradients enable both anchoring and guided propulsion. Finally, we show that AMTs can facilitate the self-assembly of microparticles into active-matter clusters, which then enhance their walking speed by bridging over stepping stones collectively. Hence, we demonstrate a unique strategy for robust delivery inside microvascular networks and for minimally invasive interventions, with non-equilibrium effects that could be equally relevant for enhancing biological transport processes. Targeted drug delivery is an exciting application of nanorobotics, but directing particles in the blood stream to the right location and in sufficient number is challenging. Gu and colleagues have developed a microtubule scaffold with embedded micromagnets that allows cargo, such as drug particles, to be transported in microvascular networks with precision and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyb完成签到 ,获得积分10
刚刚
1秒前
向雅完成签到,获得积分10
1秒前
wang5945发布了新的文献求助10
1秒前
俭朴梦凡发布了新的文献求助10
1秒前
二萌完成签到,获得积分10
2秒前
W.X.完成签到,获得积分10
2秒前
慕青应助ShujunOvO采纳,获得10
3秒前
啦啦鱼完成签到 ,获得积分10
4秒前
清爽的火车完成签到 ,获得积分10
4秒前
搬砖美少女完成签到,获得积分10
5秒前
小晴天完成签到,获得积分10
6秒前
7秒前
AI完成签到,获得积分10
7秒前
田様应助小小采纳,获得10
8秒前
claud完成签到 ,获得积分10
8秒前
奋斗的大白菜完成签到,获得积分10
8秒前
Soundyxxa完成签到 ,获得积分20
9秒前
微光完成签到,获得积分10
9秒前
贝肯妮完成签到,获得积分10
9秒前
10秒前
白月光完成签到,获得积分10
10秒前
10秒前
小雅完成签到 ,获得积分10
10秒前
liuunhen完成签到,获得积分10
10秒前
领导范儿应助闪闪路人采纳,获得10
11秒前
hwzhou10完成签到,获得积分10
12秒前
深情安青应助十一采纳,获得10
12秒前
阿米不吃菠菜完成签到,获得积分10
13秒前
iNk应助zhencheng采纳,获得10
13秒前
零渊完成签到,获得积分10
14秒前
14秒前
葡萄干发布了新的文献求助10
14秒前
轻松思枫完成签到 ,获得积分10
14秒前
RATHER完成签到,获得积分10
14秒前
hello完成签到,获得积分10
14秒前
puzi发布了新的文献求助30
15秒前
小路完成签到,获得积分10
15秒前
Linda完成签到,获得积分10
16秒前
常葶完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784882
关于积分的说明 7769151
捐赠科研通 2440425
什么是DOI,文献DOI怎么找? 1297383
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792