Semantic Embedding Guided Attention with Explicit Visual Feature Fusion for Video Captioning

隐藏字幕 计算机科学 语义鸿沟 特征(语言学) 嵌入 人工智能 自然语言处理 任务(项目管理) 可视化 成对比较 图像(数学) 图像检索 语言学 哲学 管理 经济
作者
Shan-Shan Dong,Tian-Zi Niu,Xin Luo,Wu Liu,Xin-Shun Xu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (2): 1-18 被引量:6
标识
DOI:10.1145/3550276
摘要

Video captioning, which bridges vision and language, is a fundamental yet challenging task in computer vision. To generate accurate and comprehensive sentences, both visual and semantic information is quite important. However, most existing methods simply concatenate different types of features and ignore the interactions between them. In addition, there is a large semantic gap between visual feature space and semantic embedding space, making the task very challenging. To address these issues, we propose a framework named semantic embedding guided attention with Explicit visual Feature Fusion for vidEo CapTioning, EFFECT for short, in which we design an explicit visual-feature fusion (EVF) scheme to capture the pairwise interactions between multiple visual modalities and fuse multimodal visual features of videos in an explicit way. Furthermore, we propose a novel attention mechanism called semantic embedding guided attention (SEGA ), which cooperates with the temporal attention to generate a joint attention map. Specifically, in SEGA, the semantic word embedding information is leveraged to guide the model to pay more attention to the most correlated visual features at each decoding stage. In this way, the semantic gap between visual and semantic space is alleviated to some extent. To evaluate the proposed model, we conduct extensive experiments on two widely used datasets, i.e., MSVD and MSR-VTT. The experimental results demonstrate that our approach achieves state-of-the-art results in terms of four evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
直率的勒完成签到,获得积分10
3秒前
zhang完成签到,获得积分10
4秒前
5秒前
愉快的哈密瓜完成签到,获得积分10
5秒前
bkagyin应助hhh采纳,获得10
6秒前
酷波er应助Devil采纳,获得10
6秒前
朴实芒果发布了新的文献求助10
7秒前
7秒前
苏青舟完成签到,获得积分10
8秒前
Zhangzhang完成签到,获得积分10
9秒前
9秒前
涂涂完成签到,获得积分10
10秒前
10秒前
zzz发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
快乐大炮发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
16秒前
苏苏发布了新的文献求助10
17秒前
伶俐的以晴完成签到,获得积分10
17秒前
濮阳冰海完成签到 ,获得积分10
17秒前
Fx发布了新的文献求助10
17秒前
个性的紫菜应助charmer采纳,获得50
18秒前
18秒前
18秒前
大胆易巧完成签到 ,获得积分10
18秒前
20秒前
21秒前
大个应助SCI采纳,获得10
21秒前
朴实芒果完成签到,获得积分10
21秒前
搞怪书兰发布了新的文献求助30
21秒前
深情安青应助阳12123采纳,获得10
21秒前
22秒前
24秒前
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140690
求助须知:如何正确求助?哪些是违规求助? 2791543
关于积分的说明 7799499
捐赠科研通 2447880
什么是DOI,文献DOI怎么找? 1302159
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194