Semantic Embedding Guided Attention with Explicit Visual Feature Fusion for Video Captioning

隐藏字幕 计算机科学 语义鸿沟 特征(语言学) 嵌入 人工智能 自然语言处理 任务(项目管理) 可视化 成对比较 图像(数学) 图像检索 语言学 哲学 管理 经济
作者
Shan-Shan Dong,Tian-Zi Niu,Xin Luo,Wu Liu,Xin-Shun Xu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (2): 1-18 被引量:6
标识
DOI:10.1145/3550276
摘要

Video captioning, which bridges vision and language, is a fundamental yet challenging task in computer vision. To generate accurate and comprehensive sentences, both visual and semantic information is quite important. However, most existing methods simply concatenate different types of features and ignore the interactions between them. In addition, there is a large semantic gap between visual feature space and semantic embedding space, making the task very challenging. To address these issues, we propose a framework named semantic embedding guided attention with Explicit visual Feature Fusion for vidEo CapTioning, EFFECT for short, in which we design an explicit visual-feature fusion (EVF) scheme to capture the pairwise interactions between multiple visual modalities and fuse multimodal visual features of videos in an explicit way. Furthermore, we propose a novel attention mechanism called semantic embedding guided attention (SEGA ), which cooperates with the temporal attention to generate a joint attention map. Specifically, in SEGA, the semantic word embedding information is leveraged to guide the model to pay more attention to the most correlated visual features at each decoding stage. In this way, the semantic gap between visual and semantic space is alleviated to some extent. To evaluate the proposed model, we conduct extensive experiments on two widely used datasets, i.e., MSVD and MSR-VTT. The experimental results demonstrate that our approach achieves state-of-the-art results in terms of four evaluation metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
balalal完成签到,获得积分10
刚刚
吴龙发布了新的文献求助10
刚刚
刚刚
zd200572发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
怕孤单的安蕾完成签到,获得积分10
4秒前
4秒前
如常完成签到,获得积分10
5秒前
轻松绮露发布了新的文献求助10
5秒前
Amberwdd发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
8秒前
starlx0813发布了新的文献求助10
8秒前
8秒前
qqqq发布了新的文献求助10
8秒前
8秒前
8秒前
吴龙完成签到,获得积分10
8秒前
9秒前
今后应助缓慢的皮卡丘采纳,获得10
9秒前
李润春完成签到,获得积分10
10秒前
10秒前
zz完成签到,获得积分20
10秒前
10秒前
丁丁丁完成签到,获得积分10
11秒前
张11发布了新的文献求助10
11秒前
木火灰发布了新的文献求助10
11秒前
Z赵完成签到 ,获得积分10
11秒前
李健应助dmj采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
JamesPei应助冯娇娇采纳,获得10
12秒前
cccc发布了新的文献求助10
13秒前
Kelevator完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133