亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a real-time home textile fabric defect inspection machine system for the textile industry

斑点检测 机器视觉 人工智能 机织物 自动X射线检查 纱线 自动光学检测 织物 计算机科学 图像处理 计算机视觉 工程类 图像(数学) 机械工程 边缘检测 材料科学 复合材料 运营管理
作者
Jagadish Barman,Han‐Cheng Wu,Chung‐Feng Jeffrey Kuo
出处
期刊:Textile Research Journal [SAGE]
卷期号:92 (23-24): 4778-4788 被引量:7
标识
DOI:10.1177/00405175221111477
摘要

In most fabric industries fabric quality is assessed through manual inspection, which depends on an individual judgment. It is necessary to design an automatic fabric defect performance inspection system for the industry. This study aimed to develop a real-time, low-cost, and high-performance home textile fabric defect inspection machine system. The proposed system uses the Haar wavelet transform to reduce the information content of the fabric image. The brightness of the fabric image is compensated and the camera luminance is corrected in order to filter the image texture for fabric images with the Gaussian filter after correction. After that, the fabric defect classification was performed by using the random forest classifier. The designed system capability can detect and verify 10 kinds of fabrics with different colors. Moreover, the hardware cost of the machine is low and the average true defect recognition detection rate is more than 98.70%, with good adaptability. Meanwhile, the average processing detection time for a single image is 70 ms with a fabric defect inspection speed of 30 m/min. The efficiency of the machine is increased by five times compared with the traditional inspection. The designed inspection machine can also replace manual grading, cutting, and finishing in the processes of labeling defects. Eventually, it can reduced man power and overall mass production cost, so even small-scale home textile industries can afford a machine with high-precision defect detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助满意的夜柳采纳,获得10
1秒前
歪比巴卜完成签到 ,获得积分10
8秒前
10秒前
细心从阳发布了新的文献求助20
14秒前
16秒前
16秒前
Kevin完成签到,获得积分10
21秒前
22秒前
23秒前
27秒前
27秒前
村长发布了新的文献求助10
27秒前
xiaohardy完成签到,获得积分10
30秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
Laura应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
合一海盗完成签到,获得积分10
33秒前
等待雁桃发布了新的文献求助10
33秒前
美好斓应助天才玩家H采纳,获得100
33秒前
34秒前
36秒前
ceeray23发布了新的文献求助20
36秒前
CC完成签到 ,获得积分10
37秒前
专注的问寒应助Kevin采纳,获得50
42秒前
48秒前
Lucas应助等待雁桃采纳,获得30
50秒前
风华正茂完成签到 ,获得积分10
55秒前
哈哈哈哈嗝屁完成签到,获得积分20
58秒前
59秒前
清浅发布了新的文献求助10
1分钟前
1分钟前
橙汁发布了新的文献求助10
1分钟前
1分钟前
无花果应助橙汁采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
shaylie完成签到 ,获得积分10
1分钟前
CR7应助搞怪的砖家采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664111
求助须知:如何正确求助?哪些是违规求助? 4857755
关于积分的说明 15107180
捐赠科研通 4822567
什么是DOI,文献DOI怎么找? 2581565
邀请新用户注册赠送积分活动 1535750
关于科研通互助平台的介绍 1493984