Planar Electrical Capacitance Tomography Dynamic Imaging for Non-Destructive Test

Tikhonov正则化 电容层析成像 图像分辨率 迭代重建 平面的 计算机科学 反问题 计算机视觉 断层摄影术 无损检测 人工智能 电容 光学 数学 物理 计算机图形学(图像) 数学分析 电极 量子力学
作者
Ziqiang Cui,Yu Sun,Lifeng Zhang,Huaxiang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-9 被引量:6
标识
DOI:10.1109/tim.2022.3180438
摘要

Planar electrical capacitance tomography (PECT) is sensitive to the dielectric changes in its proximity; therefore, has an attractive prospect in the non-destructive evaluation for the non-metallic composite materials. Currently, the planar ECT employs the static image method for the defect detection, which uses an individual frame of measurements for image reconstruction. The use of static image methods for defect detection depends greatly on the spatial resolution of image reconstruction algorithms. However, the ECT static images are usually of low spatial resolution, primarily due to the ill-posedness in solving its inverse problem. In this paper, a dynamic imaging method has been proposed, aiming to utilizing the information that buried in the consecutive frames. The Tikhonov regularization method is firstly employed for achieving the static image reconstructions. In addition, the level set method has been utilized for the image segmentation to distinguish between the defect and background materials. Subsequently, the dynamic imaging method that based on the frame difference methods has been used for calculating the contour of target defects. The numerical simulations and experiments showed that, the defect of different sizes and shapes could be figured out by using the dynamic imaging method. It also can be shown that, the dynamic imaging method offers more possibility and ways in detecting the defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Anthonywll采纳,获得10
刚刚
LZM完成签到,获得积分10
刚刚
1秒前
芒果与鱼发布了新的文献求助10
2秒前
2秒前
张硕士发布了新的文献求助10
2秒前
北河二完成签到,获得积分10
4秒前
科研通AI5应助彭a采纳,获得10
5秒前
科研通AI5应助ran采纳,获得10
6秒前
鳕鱼发布了新的文献求助10
7秒前
8秒前
qqqq完成签到,获得积分10
9秒前
11秒前
清欢完成签到,获得积分20
12秒前
wBw完成签到,获得积分10
13秒前
13秒前
14秒前
陶1122应助llc采纳,获得200
14秒前
一个相当e人完成签到,获得积分10
15秒前
luafu发布了新的文献求助10
16秒前
ZS完成签到,获得积分10
16秒前
Owen应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
rainbow应助科研通管家采纳,获得10
17秒前
11应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
17秒前
田様应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
18秒前
英姑应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
鳕鱼完成签到,获得积分20
20秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737690
求助须知:如何正确求助?哪些是违规求助? 3281323
关于积分的说明 10024607
捐赠科研通 2998066
什么是DOI,文献DOI怎么找? 1645021
邀请新用户注册赠送积分活动 782472
科研通“疑难数据库(出版商)”最低求助积分说明 749814