Deep learning‐based synthetization of real‐time in‐treatment 4D images using surface motion and pretreatment images: A proof‐of‐concept study

人工智能 成像体模 计算机视觉 计算机科学 深度学习 图像扭曲 核医学 医学
作者
Yuliang Huang,Zhengkun Dong,Hao Wu,Chenguang Li,Hongjia Liu,Yibao Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (11): 7016-7024 被引量:8
标识
DOI:10.1002/mp.15858
摘要

To develop a deep learning model that maps body surface motion to internal anatomy deformation, which is potentially applicable to dose-free real-time 4D virtual image-guided radiotherapy based on skin surface data.Body contours were segmented out of 4DCT images. Deformable image registration algorithm was used to register the end-of-exhalation (EOE) phase to other phases. Deformation vector field was dimension-reduced to the first two principal components (PCs). A deep learning model was trained to predict the two PC scores of each phase from surface displacement. The instant deformation field can then be reconstructed, warping EOE image to obtain real-time CT image. This approach was validated on 4D XCAT phantom, the public DIR-Lab, and 4D-Lung dataset respectively, with and without simulated noise.Validation accuracy of the tumor centroid trajectory was observed as 0.04 ± 0.02 mm on XCAT phantom. For the DIR-Lab dataset, 300 landmarks were annotated on the end-of-inhalation (EOI) images of each patient, and the mean displacements between their predicted and reference positions were below 2 mm for all studied cases. For the 4D-Lung dataset, the average dice coefficients ± std between predicted and reference tumor contours at EOI phase were 0.835 ± 0.092 for all studied cases.A deep learning-based approach was proposed and validated to predict internal anatomy deformation from the surface motion, which is potentially applicable to on-line target navigation for accurate radiotherapy based on real-time 4D skin surface data and pretreatment images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助xuex1采纳,获得10
刚刚
蜂鸟5156发布了新的文献求助10
刚刚
李爱国应助VDC采纳,获得10
1秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
ns完成签到,获得积分10
2秒前
细腻晓露发布了新的文献求助10
2秒前
李本来发布了新的文献求助10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得30
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
NN应助科研通管家采纳,获得10
3秒前
科研通AI5应助幽默的宛白采纳,获得30
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
单薄归尘完成签到 ,获得积分10
3秒前
无花果应助科研通管家采纳,获得30
3秒前
3秒前
LY完成签到,获得积分10
4秒前
枫于林完成签到 ,获得积分10
4秒前
4秒前
砰砰砰砰啪!完成签到 ,获得积分10
5秒前
lili完成签到 ,获得积分10
7秒前
xzh完成签到,获得积分10
7秒前
ddsyg126完成签到,获得积分10
8秒前
共享精神应助李小新采纳,获得10
9秒前
小鲤鱼吃大菠萝完成签到,获得积分10
9秒前
xuex1发布了新的文献求助10
9秒前
cc发布了新的文献求助50
11秒前
dd完成签到 ,获得积分10
13秒前
天天完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808