Deep learning‐based synthetization of real‐time in‐treatment 4D images using surface motion and pretreatment images: A proof‐of‐concept study

人工智能 成像体模 计算机视觉 计算机科学 深度学习 图像扭曲 核医学 医学
作者
Yuliang Huang,Zhengkun Dong,Hao Wu,Chenguang Li,Hongjia Liu,Yibao Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (11): 7016-7024 被引量:6
标识
DOI:10.1002/mp.15858
摘要

To develop a deep learning model that maps body surface motion to internal anatomy deformation, which is potentially applicable to dose-free real-time 4D virtual image-guided radiotherapy based on skin surface data.Body contours were segmented out of 4DCT images. Deformable image registration algorithm was used to register the end-of-exhalation (EOE) phase to other phases. Deformation vector field was dimension-reduced to the first two principal components (PCs). A deep learning model was trained to predict the two PC scores of each phase from surface displacement. The instant deformation field can then be reconstructed, warping EOE image to obtain real-time CT image. This approach was validated on 4D XCAT phantom, the public DIR-Lab, and 4D-Lung dataset respectively, with and without simulated noise.Validation accuracy of the tumor centroid trajectory was observed as 0.04 ± 0.02 mm on XCAT phantom. For the DIR-Lab dataset, 300 landmarks were annotated on the end-of-inhalation (EOI) images of each patient, and the mean displacements between their predicted and reference positions were below 2 mm for all studied cases. For the 4D-Lung dataset, the average dice coefficients ± std between predicted and reference tumor contours at EOI phase were 0.835 ± 0.092 for all studied cases.A deep learning-based approach was proposed and validated to predict internal anatomy deformation from the surface motion, which is potentially applicable to on-line target navigation for accurate radiotherapy based on real-time 4D skin surface data and pretreatment images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
隐形曼青应助每天都很忙采纳,获得10
3秒前
hyx-dentist发布了新的文献求助10
3秒前
3秒前
6秒前
CipherSage应助wenlin采纳,获得10
7秒前
小马甲应助孝顺的雁芙采纳,获得10
8秒前
Zdu发布了新的文献求助20
9秒前
janarbek应助WangY1263采纳,获得20
9秒前
janarbek应助hyx-dentist采纳,获得10
13秒前
桐桐应助neil_match采纳,获得10
15秒前
16秒前
wangjing发布了新的文献求助10
17秒前
18秒前
19秒前
cc完成签到,获得积分10
20秒前
科研通AI2S应助舒心新儿采纳,获得10
20秒前
20秒前
桐桐应助dxtmm采纳,获得10
20秒前
21秒前
快乐雅柏发布了新的文献求助10
24秒前
YOOO发布了新的文献求助10
26秒前
bwbw完成签到 ,获得积分10
29秒前
29秒前
快乐雅柏完成签到,获得积分20
29秒前
30秒前
31秒前
32秒前
Lucas应助ZAR采纳,获得10
32秒前
ww完成签到 ,获得积分10
32秒前
吴世勋fans完成签到,获得积分10
33秒前
yjy发布了新的文献求助10
33秒前
摸鱼的水仙完成签到,获得积分10
33秒前
34秒前
万能图书馆应助YOOO采纳,获得20
34秒前
dxtmm完成签到,获得积分10
36秒前
ShowMaker应助舒心新儿采纳,获得10
36秒前
37秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142206
求助须知:如何正确求助?哪些是违规求助? 2793191
关于积分的说明 7805737
捐赠科研通 2449467
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626821
版权声明 601291