Deep learning‐based synthetization of real‐time in‐treatment 4D images using surface motion and pretreatment images: A proof‐of‐concept study

人工智能 成像体模 计算机视觉 计算机科学 深度学习 图像扭曲 核医学 医学
作者
Yuliang Huang,Zhengkun Dong,Hao Wu,Chenguang Li,Hongjia Liu,Yibao Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (11): 7016-7024 被引量:8
标识
DOI:10.1002/mp.15858
摘要

To develop a deep learning model that maps body surface motion to internal anatomy deformation, which is potentially applicable to dose-free real-time 4D virtual image-guided radiotherapy based on skin surface data.Body contours were segmented out of 4DCT images. Deformable image registration algorithm was used to register the end-of-exhalation (EOE) phase to other phases. Deformation vector field was dimension-reduced to the first two principal components (PCs). A deep learning model was trained to predict the two PC scores of each phase from surface displacement. The instant deformation field can then be reconstructed, warping EOE image to obtain real-time CT image. This approach was validated on 4D XCAT phantom, the public DIR-Lab, and 4D-Lung dataset respectively, with and without simulated noise.Validation accuracy of the tumor centroid trajectory was observed as 0.04 ± 0.02 mm on XCAT phantom. For the DIR-Lab dataset, 300 landmarks were annotated on the end-of-inhalation (EOI) images of each patient, and the mean displacements between their predicted and reference positions were below 2 mm for all studied cases. For the 4D-Lung dataset, the average dice coefficients ± std between predicted and reference tumor contours at EOI phase were 0.835 ± 0.092 for all studied cases.A deep learning-based approach was proposed and validated to predict internal anatomy deformation from the surface motion, which is potentially applicable to on-line target navigation for accurate radiotherapy based on real-time 4D skin surface data and pretreatment images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助moonbeam采纳,获得10
刚刚
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
小九九完成签到 ,获得积分10
4秒前
隐形曼青应助逸yi采纳,获得10
4秒前
高大笙发布了新的文献求助10
5秒前
yzxzdm发布了新的文献求助40
6秒前
6秒前
Dean完成签到,获得积分10
9秒前
11秒前
12秒前
12秒前
xxh完成签到,获得积分10
12秒前
12秒前
高大笙完成签到,获得积分10
13秒前
bkagyin应助黄丽珍采纳,获得10
13秒前
情怀应助BANG采纳,获得10
14秒前
....发布了新的文献求助10
17秒前
fangfang完成签到,获得积分10
17秒前
moonbeam发布了新的文献求助10
17秒前
weishen完成签到,获得积分0
18秒前
活泼万言发布了新的文献求助10
18秒前
19秒前
19秒前
完美世界应助li采纳,获得30
21秒前
乐乐应助沫沫采纳,获得10
21秒前
21秒前
香蕉觅云应助YZYXR采纳,获得10
21秒前
minmi发布了新的文献求助20
21秒前
爱听歌的火火关注了科研通微信公众号
23秒前
wqq发布了新的文献求助10
24秒前
24秒前
等待蜜蜂完成签到,获得积分10
26秒前
bkagyin应助pearlwh1227采纳,获得10
27秒前
脑洞疼应助moonbeam采纳,获得10
27秒前
WD发布了新的文献求助10
29秒前
29秒前
30秒前
zhang发布了新的文献求助10
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182