Deep learning‐based synthetization of real‐time in‐treatment 4D images using surface motion and pretreatment images: A proof‐of‐concept study

人工智能 成像体模 计算机视觉 计算机科学 深度学习 图像扭曲 核医学 医学
作者
Yuliang Huang,Zhengkun Dong,Hao Wu,Chenguang Li,Hongjia Liu,Yibao Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (11): 7016-7024 被引量:8
标识
DOI:10.1002/mp.15858
摘要

To develop a deep learning model that maps body surface motion to internal anatomy deformation, which is potentially applicable to dose-free real-time 4D virtual image-guided radiotherapy based on skin surface data.Body contours were segmented out of 4DCT images. Deformable image registration algorithm was used to register the end-of-exhalation (EOE) phase to other phases. Deformation vector field was dimension-reduced to the first two principal components (PCs). A deep learning model was trained to predict the two PC scores of each phase from surface displacement. The instant deformation field can then be reconstructed, warping EOE image to obtain real-time CT image. This approach was validated on 4D XCAT phantom, the public DIR-Lab, and 4D-Lung dataset respectively, with and without simulated noise.Validation accuracy of the tumor centroid trajectory was observed as 0.04 ± 0.02 mm on XCAT phantom. For the DIR-Lab dataset, 300 landmarks were annotated on the end-of-inhalation (EOI) images of each patient, and the mean displacements between their predicted and reference positions were below 2 mm for all studied cases. For the 4D-Lung dataset, the average dice coefficients ± std between predicted and reference tumor contours at EOI phase were 0.835 ± 0.092 for all studied cases.A deep learning-based approach was proposed and validated to predict internal anatomy deformation from the surface motion, which is potentially applicable to on-line target navigation for accurate radiotherapy based on real-time 4D skin surface data and pretreatment images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Wu语完成签到 ,获得积分10
3秒前
晚风完成签到,获得积分10
4秒前
山猫发布了新的文献求助10
4秒前
陈洋发布了新的文献求助10
4秒前
5秒前
金玉完成签到,获得积分10
5秒前
陈敏娇完成签到,获得积分10
7秒前
7秒前
8秒前
10秒前
dove完成签到,获得积分10
11秒前
大模型应助陈洋采纳,获得10
11秒前
11秒前
cencen发布了新的文献求助10
13秒前
14秒前
dove发布了新的文献求助10
17秒前
田様应助wwz采纳,获得20
18秒前
19秒前
紫麒麟完成签到,获得积分10
20秒前
20秒前
溜溜莓完成签到,获得积分10
22秒前
23秒前
世界尽头完成签到,获得积分10
23秒前
25秒前
华仔应助Summer采纳,获得10
25秒前
orixero应助神勇秋白采纳,获得10
25秒前
莉莉发布了新的文献求助10
26秒前
27秒前
开朗筮发布了新的文献求助10
28秒前
海绵宝宝完成签到,获得积分10
33秒前
开朗筮完成签到,获得积分10
35秒前
35秒前
35秒前
1111茗完成签到 ,获得积分20
38秒前
39秒前
锤子简历关注了科研通微信公众号
39秒前
iuu完成签到,获得积分10
39秒前
空写乐发布了新的文献求助10
39秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206874
求助须知:如何正确求助?哪些是违规求助? 4385090
关于积分的说明 13655640
捐赠科研通 4243471
什么是DOI,文献DOI怎么找? 2328142
邀请新用户注册赠送积分活动 1325869
关于科研通互助平台的介绍 1277979