A Two-Stage DNN Model With Mask-Gated Convolution for Automotive Radar Interference Detection and Mitigation

自编码 计算机科学 雷达 干扰(通信) 人工神经网络 人工智能 噪音(视频) 卷积(计算机科学) 信号(编程语言) 模式识别(心理学) 算法 频道(广播) 电信 图像(数学) 程序设计语言
作者
Shengyi Chen,Jalal Taghia,Uwe Kühnau,Nils Pohl,Rainer Martin
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (12): 12017-12027 被引量:3
标识
DOI:10.1109/jsen.2022.3173129
摘要

As the number of radar sensors on the road increases rapidly and many of these sensors share the same frequency spectrum, mutual interference cannot be avoided. This paper introduces a novel automotive radar interference mitigation approach using an autoencoder model which consists of separate neural networks for the detection and reconstruction steps. A mask-gated convolution is proposed to help the reconstruction neural network to learn the signal pattern from interference-free samples and to interpolate accordingly the signal segments at the disturbed positions. Through perturbation analysis it is shown that the reconstruction neural network can recover the distorted samples by utilizing their surrounding relevant samples. By exploiting the nature of interference in real-world scenarios, the proposed training approach does not need hand-labeled training data. Together with the proposed composite training loss, the neural network can recover the disturbed discrete beat signal with remarkable improvements in the signal-to-interference-plus-noise ratio (SINR) and the mean absolute percentage error (MAPE). Moreover, despite the use of a purely simulated training data set, the autoencoder can deal with real-world radar measurements which are more complex than the training data set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助yannnis采纳,获得10
2秒前
开朗阁完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Noah完成签到,获得积分10
4秒前
4秒前
开朗艳一发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Paradox发布了新的文献求助10
6秒前
6秒前
西亭发布了新的文献求助10
7秒前
浮生发布了新的文献求助100
7秒前
flywo发布了新的文献求助10
7秒前
9秒前
kkk发布了新的文献求助10
9秒前
9秒前
今后应助shikong采纳,获得30
9秒前
震动的听枫完成签到,获得积分10
9秒前
9秒前
Jasperlee完成签到 ,获得积分10
10秒前
充电宝应助薇子采纳,获得10
10秒前
华仔应助sanxian采纳,获得10
11秒前
田様应助直率的傲安采纳,获得30
11秒前
11秒前
13秒前
13秒前
13秒前
lim发布了新的文献求助10
14秒前
DreamRunner0410完成签到,获得积分10
14秒前
pinkyy完成签到,获得积分10
14秒前
王晓完成签到,获得积分10
15秒前
jweng完成签到,获得积分10
15秒前
爆米花应助棒棒冰采纳,获得10
15秒前
顾矜应助不吃晚饭采纳,获得10
15秒前
求助人员发布了新的文献求助10
16秒前
12345发布了新的文献求助10
16秒前
大龙哥886应助微风采纳,获得10
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583326
求助须知:如何正确求助?哪些是违规求助? 4667155
关于积分的说明 14765758
捐赠科研通 4609337
什么是DOI,文献DOI怎么找? 2529123
邀请新用户注册赠送积分活动 1498393
关于科研通互助平台的介绍 1467043