A Two-Stage DNN Model With Mask-Gated Convolution for Automotive Radar Interference Detection and Mitigation

自编码 计算机科学 雷达 干扰(通信) 人工神经网络 人工智能 噪音(视频) 卷积(计算机科学) 信号(编程语言) 模式识别(心理学) 算法 频道(广播) 电信 图像(数学) 程序设计语言
作者
Shengyi Chen,Jalal Taghia,Uwe Kühnau,Nils Pohl,Rainer Martin
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (12): 12017-12027 被引量:3
标识
DOI:10.1109/jsen.2022.3173129
摘要

As the number of radar sensors on the road increases rapidly and many of these sensors share the same frequency spectrum, mutual interference cannot be avoided. This paper introduces a novel automotive radar interference mitigation approach using an autoencoder model which consists of separate neural networks for the detection and reconstruction steps. A mask-gated convolution is proposed to help the reconstruction neural network to learn the signal pattern from interference-free samples and to interpolate accordingly the signal segments at the disturbed positions. Through perturbation analysis it is shown that the reconstruction neural network can recover the distorted samples by utilizing their surrounding relevant samples. By exploiting the nature of interference in real-world scenarios, the proposed training approach does not need hand-labeled training data. Together with the proposed composite training loss, the neural network can recover the disturbed discrete beat signal with remarkable improvements in the signal-to-interference-plus-noise ratio (SINR) and the mean absolute percentage error (MAPE). Moreover, despite the use of a purely simulated training data set, the autoencoder can deal with real-world radar measurements which are more complex than the training data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
cwq15963发布了新的文献求助10
2秒前
科研通AI2S应助Peggy采纳,获得10
2秒前
3秒前
4秒前
5秒前
6秒前
6秒前
欧阳正义发布了新的文献求助10
6秒前
会飞的鱼完成签到,获得积分10
7秒前
9秒前
9秒前
Kikua发布了新的文献求助10
9秒前
秋雨发布了新的文献求助10
9秒前
moumou发布了新的文献求助10
9秒前
L14ing完成签到,获得积分10
10秒前
11秒前
隐形曼青应助三省采纳,获得10
12秒前
12秒前
you秀的哈密瓜完成签到 ,获得积分10
13秒前
英姑应助满意的盼夏采纳,获得10
13秒前
13秒前
烟花应助科研通管家采纳,获得10
13秒前
14秒前
Genius完成签到,获得积分10
14秒前
14秒前
Able应助科研通管家采纳,获得10
14秒前
14秒前
wanci应助科研通管家采纳,获得10
14秒前
14秒前
小可爱521应助科研通管家采纳,获得30
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
JamesPei应助科研通管家采纳,获得30
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498