Review of Machine Learning for Hydrodynamics, Transport, and Reactions in Multiphase Flows and Reactors

计算流体力学 多相流 阻力 钥匙(锁) 传热 传质 领域(数学分析) 计算机科学 人工智能 机械 物理 数学 计算机安全 数学分析
作者
Li‐Tao Zhu,Xizhong Chen,Bo Ouyang,Wei‐Cheng Yan,He Lei,Zhe Chen,Zheng‐Hong Luo
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (28): 9901-9949 被引量:110
标识
DOI:10.1021/acs.iecr.2c01036
摘要

Artificial intelligence (AI), machine learning (ML), and data science are leading to a promising transformative paradigm. ML, especially deep learning and physics-informed ML, is a valuable toolkit that complements incomplete domain-specific knowledge in conventional experimental and computational methods. ML can provide flexible techniques to facilitate the conceptual development of new robust predictive models for multiphase flows and reactors by finding hidden pattern/information/mechanism in a data set. Due to such emergence, we thereby comprehensively survey, explore, analyze, and discuss key advancements of recent ML applications to hydrodynamics, heat and mass transfer, and reactions in single-phase and multiphase flow systems from different aspects: (1) development of multiphase closure models of drag force, turbulence stresses and heat/mass transfer to improve the accuracy and efficiency of typical CFD simulations; (2) image reconstruction, regime identification, key parameter predictions, and optimization of multiphase flow and transport fields; (3) reaction kinetics modeling (e.g., predictions of reaction networks, kinetic parameters, and species production) and reaction condition optimization. These sections also discuss and analyze the key advantages and weakness of ML for solving the problems in the domain of multiphase flows and reactors. Finally, we summarize the under-solving challenges and opportunities in order to identify future directions that would be useful for the research community. Future development and study of multiphase flows and reactors are envisaged to be accelerated by ML and data science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
吉他平方发布了新的文献求助30
2秒前
有魅力遥完成签到,获得积分10
2秒前
风筝发布了新的文献求助10
3秒前
蟒玉朝天完成签到 ,获得积分10
4秒前
wanci应助Gw采纳,获得10
4秒前
菠萝吹雪发布了新的文献求助10
4秒前
4秒前
Liao发布了新的文献求助10
5秒前
xuuuuu完成签到,获得积分10
7秒前
大抵是能上岸的完成签到,获得积分10
7秒前
7秒前
Johnpick应助烊玺采纳,获得10
8秒前
白桃发布了新的文献求助10
8秒前
buno应助董文同学采纳,获得10
8秒前
czp完成签到,获得积分10
8秒前
大航完成签到,获得积分10
10秒前
sxt发布了新的文献求助30
10秒前
ysq关闭了ysq文献求助
11秒前
Three发布了新的文献求助10
11秒前
光锥完成签到,获得积分10
12秒前
刘闪闪发布了新的文献求助10
12秒前
顾矜应助sun采纳,获得10
12秒前
温暖半芹完成签到,获得积分10
13秒前
阳光完成签到,获得积分10
13秒前
13秒前
14秒前
llllllllyl完成签到,获得积分10
14秒前
希望天下0贩的0应助光锥采纳,获得10
15秒前
无私的黄豆完成签到 ,获得积分10
16秒前
17秒前
北木萧完成签到,获得积分10
17秒前
天天快乐应助yihuifa采纳,获得10
18秒前
Endlessway应助VANGOGH采纳,获得20
18秒前
19秒前
田様应助秦艽采纳,获得10
20秒前
20秒前
嵇元容完成签到,获得积分10
20秒前
刘闪闪完成签到,获得积分10
20秒前
bubble发布了新的文献求助10
22秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221340
求助须知:如何正确求助?哪些是违规求助? 2870099
关于积分的说明 8168990
捐赠科研通 2536895
什么是DOI,文献DOI怎么找? 1369109
科研通“疑难数据库(出版商)”最低求助积分说明 645367
邀请新用户注册赠送积分活动 619036