Missing value estimation using clustering and deep learning within multiple imputation framework

缺少数据 插补(统计学) Boosting(机器学习) 聚类分析 计算机科学 统计 梯度升压 人工智能 集成学习 人工神经网络 随机森林 模式识别(心理学) 数据挖掘 机器学习 数学
作者
Manar D. Samad,Sakib Abrar,Norou Diawara
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:249: 108968-108968 被引量:33
标识
DOI:10.1016/j.knosys.2022.108968
摘要

Missing values in tabular data restrict the use and performance of machine learning, requiring the imputation of missing values. The most popular imputation algorithm is arguably multiple imputations using chains of equations (MICE), which estimates missing values from linear conditioning on observed values. This paper proposes methods to improve both the imputation accuracy of MICE and the classification accuracy of imputed data by replacing MICE's linear regressors with ensemble learning and deep neural networks (DNN). The imputation accuracy is further improved by characterizing individual samples with cluster labels (CISCL) obtained from the training data. Our extensive analyses involving six tabular data sets, up to 80% missing values, and three missing types (missing completely at random, missing at random, missing not at random) reveal that ensemble or deep learning within MICE is superior to the baseline MICE (b-MICE), both of which are consistently outperformed by CISCL. Results show that CISCL + b-MICE outperforms b-MICE for all percentages and types of missingness. Our proposed DNN-based MICE and gradient boosting MICE plus CISCL (GB-MICE-CISCL) outperform seven state-of-the-art imputation algorithms in most experimental cases. The classification accuracy of GB-MICE imputed data is further improved by our proposed GB-MICE-CISCL imputation method across all missingness percentages. Results also reveal a shortcoming of the MICE framework at high missingness (>50%) and when the missing type is not random. This paper provides a generalized approach to identifying the best imputation model for a data set with a missingness percentage and type.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小月986发布了新的文献求助10
刚刚
1秒前
haku发布了新的文献求助10
2秒前
4秒前
武雨寒发布了新的文献求助10
4秒前
守望阳光1完成签到,获得积分10
5秒前
6秒前
6秒前
搜集达人应助chili采纳,获得10
7秒前
科研通AI2S应助炒栗子采纳,获得10
7秒前
7秒前
楚辞发布了新的文献求助30
7秒前
未来可期发布了新的文献求助10
8秒前
自觉的语海应助echasl73采纳,获得10
8秒前
9秒前
自信号厂应助snowskating采纳,获得30
10秒前
haku完成签到,获得积分10
11秒前
杜青发布了新的文献求助10
11秒前
13秒前
超级的鼠标完成签到,获得积分10
13秒前
zydd发布了新的文献求助10
14秒前
跨材料完成签到,获得积分10
14秒前
肖礼成完成签到,获得积分10
14秒前
小材人发布了新的文献求助10
15秒前
Albert完成签到,获得积分10
16秒前
17秒前
香蕉不二完成签到 ,获得积分10
17秒前
18秒前
19秒前
20秒前
21秒前
wangjialong完成签到,获得积分10
21秒前
思源应助椰子树采纳,获得10
22秒前
22秒前
吃掉所有烦恼完成签到,获得积分10
23秒前
23秒前
23秒前
23秒前
23秒前
lingyu完成签到 ,获得积分10
24秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072205
求助须知:如何正确求助?哪些是违规求助? 2726027
关于积分的说明 7492250
捐赠科研通 2373536
什么是DOI,文献DOI怎么找? 1258633
科研通“疑难数据库(出版商)”最低求助积分说明 610333
版权声明 596952