Missing value estimation using clustering and deep learning within multiple imputation framework

缺少数据 插补(统计学) Boosting(机器学习) 聚类分析 计算机科学 统计 梯度升压 人工智能 集成学习 人工神经网络 随机森林 模式识别(心理学) 数据挖掘 机器学习 数学
作者
Manar D. Samad,Sakib Abrar,Norou Diawara
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:249: 108968-108968 被引量:33
标识
DOI:10.1016/j.knosys.2022.108968
摘要

Missing values in tabular data restrict the use and performance of machine learning, requiring the imputation of missing values. The most popular imputation algorithm is arguably multiple imputations using chains of equations (MICE), which estimates missing values from linear conditioning on observed values. This paper proposes methods to improve both the imputation accuracy of MICE and the classification accuracy of imputed data by replacing MICE's linear regressors with ensemble learning and deep neural networks (DNN). The imputation accuracy is further improved by characterizing individual samples with cluster labels (CISCL) obtained from the training data. Our extensive analyses involving six tabular data sets, up to 80% missing values, and three missing types (missing completely at random, missing at random, missing not at random) reveal that ensemble or deep learning within MICE is superior to the baseline MICE (b-MICE), both of which are consistently outperformed by CISCL. Results show that CISCL + b-MICE outperforms b-MICE for all percentages and types of missingness. Our proposed DNN-based MICE and gradient boosting MICE plus CISCL (GB-MICE-CISCL) outperform seven state-of-the-art imputation algorithms in most experimental cases. The classification accuracy of GB-MICE imputed data is further improved by our proposed GB-MICE-CISCL imputation method across all missingness percentages. Results also reveal a shortcoming of the MICE framework at high missingness (>50%) and when the missing type is not random. This paper provides a generalized approach to identifying the best imputation model for a data set with a missingness percentage and type.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助sincerity采纳,获得10
2秒前
顾矜应助yly采纳,获得10
2秒前
FashionBoy应助李李李采纳,获得10
3秒前
ESJIAN发布了新的文献求助30
9秒前
qaq完成签到,获得积分10
10秒前
12秒前
费雪卉发布了新的文献求助10
13秒前
李健应助无情的宛儿采纳,获得10
13秒前
pluto应助yyy_采纳,获得10
15秒前
16秒前
DDDD完成签到,获得积分10
17秒前
17秒前
小兔叽发布了新的文献求助10
17秒前
热情的曼安完成签到,获得积分10
18秒前
18秒前
李李李发布了新的文献求助10
20秒前
21秒前
Jasper应助Yolanda3088采纳,获得10
21秒前
wenlin发布了新的文献求助10
22秒前
moon完成签到 ,获得积分10
23秒前
sincerity发布了新的文献求助10
26秒前
小兔叽完成签到,获得积分10
28秒前
shaco发布了新的文献求助10
28秒前
29秒前
wenlin完成签到,获得积分10
29秒前
29秒前
微信研友发布了新的文献求助10
31秒前
哈哈哈完成签到 ,获得积分10
33秒前
彩色菲鹰完成签到,获得积分10
35秒前
情怀应助xcydd采纳,获得30
35秒前
37秒前
充电宝应助111采纳,获得10
37秒前
彩色菲鹰发布了新的文献求助10
38秒前
38秒前
41秒前
霓娜酱发布了新的文献求助10
42秒前
42秒前
微信研友完成签到,获得积分10
45秒前
小雨完成签到 ,获得积分10
47秒前
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670942
求助须知:如何正确求助?哪些是违规求助? 3227849
关于积分的说明 9777334
捐赠科研通 2938001
什么是DOI,文献DOI怎么找? 1609736
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959