Dynamic Ensemble Selection for Imbalanced Data Streams With Concept Drift

概念漂移 分类器(UML) 过采样 计算机科学 数据流 随机子空间法 数据流挖掘 人工智能 数据挖掘 集成学习 机器学习 选择(遗传算法) 模式识别(心理学) 带宽(计算) 计算机网络 电信
作者
Botao Jiao,Yinan Guo,Dunwei Gong,Qiuju Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 1278-1291 被引量:39
标识
DOI:10.1109/tnnls.2022.3183120
摘要

Ensemble learning, as a popular method to tackle concept drift in data stream, forms a combination of base classifiers according to their global performances. However, concept drift generally occurs in local data space, causing significantly different performances of a base classifier at different locations. Thus, employing global performance as a criterion to select base classifier is inappropriate. Moreover, data stream is often accompanied by class imbalance problem, which affects the classification accuracy of ensemble learning on minority instances. To drawback these problems, a dynamic ensemble selection for imbalanced data streams with concept drift (DES-ICD) is proposed. For data arrived in chunk-by-chunk, a novel synthetic minority oversampling technique with adaptive nearest neighbors (AnnSMOTE) is developed to generate new minority instances that conform to the new concept. Following that, DES-ICD creates a base classifier on newly arrived data chunk balanced by AnnSMOTE and merges it with historical base classifiers to form a candidate classifier pool. For each query instance, the optimal combination is constructed in terms of the performance of candidate classifiers in its neighborhood. Experimental results for nine synthetic and five real-world datasets show that the proposed method outperforms seven comparative methods on classification accuracy and tracks new concepts in an imbalanced data stream more preciously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米酒完成签到,获得积分10
1秒前
step_stone给step_stone的求助进行了留言
1秒前
乐乐应助ayin采纳,获得10
2秒前
无花果应助hhh采纳,获得10
4秒前
叁壹粑粑完成签到,获得积分10
5秒前
酷酷碧完成签到,获得积分10
5秒前
6秒前
磕盐民工完成签到,获得积分10
7秒前
7秒前
忘羡222发布了新的文献求助20
7秒前
我是老大应助TT采纳,获得10
9秒前
9秒前
9秒前
雪鸽鸽完成签到,获得积分10
10秒前
完美世界应助开心青旋采纳,获得10
10秒前
LD完成签到 ,获得积分10
12秒前
xjy完成签到 ,获得积分10
12秒前
qzaima完成签到,获得积分10
12秒前
13秒前
xueshufengbujue完成签到,获得积分10
13秒前
楼寒天发布了新的文献求助10
13秒前
14秒前
科研通AI5应助111111111采纳,获得10
15秒前
15秒前
sunsunsun完成签到,获得积分10
15秒前
哎嘤斯坦完成签到,获得积分10
17秒前
17秒前
sweetbearm应助潦草采纳,获得10
18秒前
sunsunsun发布了新的文献求助10
18秒前
酷波er应助Mars采纳,获得10
19秒前
迪士尼在逃后母完成签到,获得积分10
19秒前
19秒前
我是老大应助su采纳,获得10
20秒前
hhh发布了新的文献求助10
21秒前
22秒前
科研通AI5应助魏伯安采纳,获得10
23秒前
23秒前
神可馨完成签到 ,获得积分10
24秒前
Hangerli发布了新的文献求助20
24秒前
HealthyCH完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824