Remaining useful life prediction of rolling bearings based on convolutional recurrent attention network

联营 计算机科学 卷积神经网络 人工智能 特征(语言学) 集合(抽象数据类型) 模式识别(心理学) 特征提取 深度学习 机器学习 语言学 哲学 程序设计语言
作者
Qiang Zhang,Zijian Ye,Siyu Shao,Tianlin Niu,Yuwei Zhao
出处
期刊:Assembly Automation [Emerald Publishing Limited]
卷期号:42 (3): 372-387 被引量:6
标识
DOI:10.1108/aa-08-2021-0113
摘要

Purpose The current studies on remaining useful life (RUL) prediction mainly rely on convolutional neural networks (CNNs) and long short-term memories (LSTMs) and do not take full advantage of the attention mechanism, resulting in lack of prediction accuracy. To further improve the performance of the above models, this study aims to propose a novel end-to-end RUL prediction framework, called convolutional recurrent attention network (CRAN) to achieve high accuracy. Design/methodology/approach The proposed CRAN is a CNN-LSTM-based model that effectively combines the powerful feature extraction ability of CNN and sequential processing capability of LSTM. The channel attention mechanism, spatial attention mechanism and LSTM attention mechanism are incorporated in CRAN, assigning different attention coefficients to CNN and LSTM. First, features of the bearing vibration data are extracted from both time and frequency domain. Next, the training and testing set are constructed. Then, the CRAN is trained offline using the training set. Finally, online RUL estimation is performed by applying data from the testing set to the trained CRAN. Findings CNN-LSTM-based models have higher RUL prediction accuracy than CNN-based and LSTM-based models. Using a combination of max pooling and average pooling can reduce the loss of feature information, and in addition, the structure of the serial attention mechanism is superior to the parallel attention structure. Comparing the proposed CRAN with six different state-of-the-art methods, for the predicted results of two testing bearings, the proposed CRAN has an average reduction in the root mean square error of 57.07/80.25%, an average reduction in the mean absolute error of 62.27/85.87% and an average improvement in score of 12.65/6.57%. Originality/value This article provides a novel end-to-end rolling bearing RUL prediction framework, which can provide a reference for the formulation of bearing maintenance programs in the industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着烧鹅完成签到,获得积分10
1秒前
3秒前
7秒前
7秒前
扎根发布了新的文献求助10
8秒前
杨俊锋完成签到,获得积分20
8秒前
科研通AI5应助科研虫采纳,获得10
9秒前
快乐吗猪完成签到 ,获得积分10
10秒前
yjf完成签到,获得积分10
10秒前
10秒前
11秒前
深情不弱完成签到 ,获得积分10
11秒前
13秒前
香蕉觅云应助hhhhh采纳,获得10
13秒前
14秒前
小酥饼完成签到,获得积分10
14秒前
16秒前
刚刚好完成签到,获得积分10
16秒前
木子应助表演采纳,获得50
17秒前
dll完成签到 ,获得积分10
17秒前
炙热冰夏发布了新的文献求助10
18秒前
纯情的远山完成签到,获得积分10
20秒前
zhangyidian应助大气绮露采纳,获得10
22秒前
24秒前
24秒前
小马甲应助萤火采纳,获得10
27秒前
dyy发布了新的文献求助10
28秒前
研友_gnv61n完成签到,获得积分0
28秒前
xcf6653发布了新的文献求助10
28秒前
hhhhh发布了新的文献求助10
29秒前
炙热冰夏完成签到,获得积分10
33秒前
长青关注了科研通微信公众号
34秒前
李爱国应助Zx采纳,获得10
35秒前
思源应助慕哈哈哈采纳,获得10
36秒前
36秒前
会厌完成签到 ,获得积分10
36秒前
37秒前
DLL完成签到 ,获得积分10
37秒前
38秒前
打打应助hhhhh采纳,获得10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174