High‐throughput UPLC‐Q‐TOF‐MS/MS coupled with multivariable data processing approach for the rapid screening and characterization of chemical constituents and potential bioactive compounds from Danggui Shaoyao San

化学 化学成分 主成分分析 色谱法 三萜类 偏最小二乘回归 传统医学 立体化学 人工智能 机器学习 计算机科学 医学
作者
Na Li,Yongzhou Yu,Xiaoyan Cui,Qi Liu,Hui Xiong
出处
期刊:Biomedical Chromatography [Wiley]
卷期号:36 (9): e5420-e5420 被引量:9
标识
DOI:10.1002/bmc.5420
摘要

Abstract Danggui Shaoyao San (DSS), a herbal formula, has been widely used for decades in China to treat senile dementia and dysmenorrhea. Here, an integrative high‐throughput UPLC‐Q‐TOF‐MS/MS method coupled with a multivariable data processing approach was established for rapidly screening and identifying chemical constituents and potential bioactive compounds from DSS. Through the comparison with mass fragment ions, relevant literature, and in‐house reference material database coupled with MS cleavage mechanism, 150 chemical constituents, mainly including triterpenoids, flavonoids, phathalides, and organic acids, were tentatively characterized. Most of them were identified for the first time. Then, principal component analysis was used to evaluate the differences in chemical profiles between groups, whereas the variable importance of the projection (VIP) spectrum (VIP > 1) and the trend plot of orthogonal partial least squares discriminant analysis were applied to intuitively screen the candidate variables present only in the dosed group. Consequently, by comparison with all the characterized components in vitro , 23 potential bioactive compounds were successfully identified, comprising 5 triterpenoids, 4 phathalides, 4 flavonoids, 4 organic acids, 3 lactones, and 3 other compounds, which were present in various medicinal materials, reflecting a synergistic mechanism. This work developed a rapid, reliable, and robust approach for comprehensive characterization of the chemical components and potential bioactive compounds of DSS, providing solid data for further research on pharmacodynamic substances and pharmacological mechanisms of DSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后的小白菜完成签到,获得积分10
刚刚
MrIShelter完成签到,获得积分10
刚刚
刚刚
刚刚
wam发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
100发布了新的文献求助10
2秒前
Orange应助俏皮小土豆采纳,获得10
3秒前
3秒前
VVZD完成签到,获得积分10
4秒前
4秒前
4秒前
yunny发布了新的文献求助20
4秒前
JamesPei应助东山采纳,获得10
4秒前
5秒前
5秒前
太阳完成签到,获得积分10
5秒前
研友_VZG7GZ应助能干的海露采纳,获得10
5秒前
yuewang发布了新的文献求助10
6秒前
自觉雅柏完成签到,获得积分10
6秒前
希望天下0贩的0应助lulu828采纳,获得10
6秒前
风中书竹发布了新的文献求助10
6秒前
DUhn完成签到,获得积分10
7秒前
hhhh发布了新的文献求助10
7秒前
gouqi完成签到,获得积分10
8秒前
8秒前
janan33发布了新的文献求助10
9秒前
VVZD发布了新的文献求助10
9秒前
9秒前
小晴空完成签到,获得积分10
9秒前
隐形曼青应助100采纳,获得10
9秒前
WindChaser发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
10秒前
sule完成签到,获得积分10
10秒前
天天快乐应助Jackson_Cai采纳,获得10
10秒前
月半战戈完成签到,获得积分10
11秒前
阿拉发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435804
求助须知:如何正确求助?哪些是违规求助? 4548006
关于积分的说明 14211638
捐赠科研通 4468203
什么是DOI,文献DOI怎么找? 2448968
邀请新用户注册赠送积分活动 1439889
关于科研通互助平台的介绍 1416503