PolypSeg+: A Lightweight Context-Aware Network for Real-Time Polyp Segmentation

计算机科学 分割 棱锥(几何) 背景(考古学) 人工智能 任务(项目管理) 特征(语言学) 图像分割 融合机制 计算机视觉 模式识别(心理学) 融合 古生物学 生物 哲学 经济 物理 管理 光学 脂质双层融合 语言学
作者
Huisi Wu,Zebin Zhao,Jiafu Zhong,Wei Wang,Zhenkun Wen,Jing Qin
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (4): 2610-2621 被引量:34
标识
DOI:10.1109/tcyb.2022.3162873
摘要

Automatic polyp segmentation from colonoscopy videos is a prerequisite for the development of a computer-assisted colon cancer examination and diagnosis system. However, it remains a very challenging task owing to the large variation of polyps, the low contrast between polyps and background, and the blurring boundaries of polyps. More importantly, real-time performance is a necessity of this task, as it is anticipated that the segmented results can be immediately presented to the doctor during the colonoscopy intervention for his/her prompt decision and action. It is difficult to develop a model with powerful representation capability, yielding satisfactory segmentation results and, simultaneously, maintaining real-time performance. In this article, we present a novel lightweight context-aware network, namely, PolypSeg+, attempting to capture distinguishable features of polyps without increasing network complexity and sacrificing time performance. To achieve this, a set of novel lightweight techniques is developed and integrated into the proposed PolypSeg+, including an adaptive scale context (ASC) module equipped with a lightweight attention mechanism to tackle the large-scale variation of polyps, an efficient global context (EGC) module to promote the fusion of low-level and high-level features by excluding background noise and preserving boundary details, and a lightweight feature pyramid fusion (FPF) module to further refine the features extracted from the ASC and EGC. We extensively evaluate the proposed PolypSeg+ on two famous public available datasets for the polyp segmentation task: 1) Kvasir-SEG and 2) CVC-Endoscenestill. The experimental results demonstrate that our PolypSeg+ consistently outperforms other state-of-the-art networks by achieving better segmentation accuracy in much less running time. The code is available at https://github.com/szu-zzb/polypsegplus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星星完成签到,获得积分10
1秒前
Dskelf完成签到,获得积分10
1秒前
无花果应助故意的访云采纳,获得10
1秒前
1秒前
2秒前
Akim应助jase采纳,获得10
2秒前
2秒前
Jouleken完成签到,获得积分10
2秒前
博修发布了新的文献求助10
3秒前
LI完成签到,获得积分10
3秒前
4秒前
tree发布了新的文献求助10
4秒前
4秒前
乐乐应助rengar采纳,获得10
4秒前
orixero应助年年采纳,获得10
4秒前
青词完成签到,获得积分10
5秒前
5秒前
6秒前
卡齐娜发布了新的文献求助10
6秒前
6秒前
猪猪hero发布了新的文献求助10
6秒前
pcr发布了新的文献求助10
6秒前
Li发布了新的文献求助10
7秒前
7秒前
yyy发布了新的文献求助10
7秒前
解天问完成签到 ,获得积分10
7秒前
131343完成签到,获得积分10
7秒前
隐形曼青应助hmx采纳,获得10
7秒前
Song发布了新的文献求助10
8秒前
研友_5476B5发布了新的文献求助10
8秒前
愉快秀完成签到,获得积分20
8秒前
8秒前
丘比特应助猫好好采纳,获得20
8秒前
kkyy发布了新的文献求助10
9秒前
10秒前
10秒前
叶枫完成签到,获得积分10
10秒前
田様应助meimingzi采纳,获得10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650