PolypSeg+: A Lightweight Context-Aware Network for Real-Time Polyp Segmentation

计算机科学 分割 棱锥(几何) 背景(考古学) 人工智能 任务(项目管理) 特征(语言学) 图像分割 计算机视觉 模式识别(心理学) 生物 语言学 光学 物理 哲学 古生物学 经济 管理
作者
Huisi Wu,Zhao Zhen,Jiafu Zhong,Wei Wang,Zhenkun Wen,Jing Qin
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (4): 2610-2621 被引量:13
标识
DOI:10.1109/tcyb.2022.3162873
摘要

Automatic polyp segmentation from colonoscopy videos is a prerequisite for the development of a computer-assisted colon cancer examination and diagnosis system. However, it remains a very challenging task owing to the large variation of polyps, the low contrast between polyps and background, and the blurring boundaries of polyps. More importantly, real-time performance is a necessity of this task, as it is anticipated that the segmented results can be immediately presented to the doctor during the colonoscopy intervention for his/her prompt decision and action. It is difficult to develop a model with powerful representation capability, yielding satisfactory segmentation results and, simultaneously, maintaining real-time performance. In this article, we present a novel lightweight context-aware network, namely, PolypSeg+, attempting to capture distinguishable features of polyps without increasing network complexity and sacrificing time performance. To achieve this, a set of novel lightweight techniques is developed and integrated into the proposed PolypSeg+, including an adaptive scale context (ASC) module equipped with a lightweight attention mechanism to tackle the large-scale variation of polyps, an efficient global context (EGC) module to promote the fusion of low-level and high-level features by excluding background noise and preserving boundary details, and a lightweight feature pyramid fusion (FPF) module to further refine the features extracted from the ASC and EGC. We extensively evaluate the proposed PolypSeg+ on two famous public available datasets for the polyp segmentation task: 1) Kvasir-SEG and 2) CVC-Endoscenestill. The experimental results demonstrate that our PolypSeg+ consistently outperforms other state-of-the-art networks by achieving better segmentation accuracy in much less running time. The code is available at https://github.com/szu-zzb/polypsegplus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助jayskang采纳,获得10
3秒前
3秒前
正直亦旋完成签到,获得积分10
3秒前
3秒前
纪沛儿完成签到,获得积分10
4秒前
英俊的铭应助dxction采纳,获得10
4秒前
dong发布了新的文献求助10
6秒前
乐观蚂蚁完成签到 ,获得积分10
7秒前
Jasper应助唐瑾瑜采纳,获得10
7秒前
7秒前
焦糖完成签到,获得积分10
8秒前
Trevor2021完成签到,获得积分10
10秒前
Orange应助miku1采纳,获得10
10秒前
10秒前
10秒前
Stevenshen发布了新的文献求助10
12秒前
z1y1p1完成签到,获得积分10
13秒前
13秒前
小白一号应助dong采纳,获得10
14秒前
英勇的岩完成签到,获得积分20
14秒前
14秒前
困困咪完成签到,获得积分10
15秒前
淡然平灵给淡然平灵的求助进行了留言
17秒前
唐瑾瑜发布了新的文献求助10
19秒前
SciGPT应助Chris采纳,获得30
19秒前
顺心绮兰完成签到,获得积分10
19秒前
HCLonely应助jayskang采纳,获得10
19秒前
19秒前
RRRRRRR发布了新的文献求助10
19秒前
情怀应助ing采纳,获得10
19秒前
20秒前
20秒前
21秒前
杨乃彬完成签到,获得积分10
21秒前
young完成签到,获得积分10
21秒前
22秒前
彭于晏应助61采纳,获得10
23秒前
23秒前
JJ发布了新的文献求助10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304234
求助须知:如何正确求助?哪些是违规求助? 2938264
关于积分的说明 8487851
捐赠科研通 2612638
什么是DOI,文献DOI怎么找? 1426821
科研通“疑难数据库(出版商)”最低求助积分说明 662842
邀请新用户注册赠送积分活动 647344