The enhanced effect of metal catalysts is crucial to achieve advanced performance of hydrogen storage system. Rational design of catalysts with superior catalytic activity is significant to regulate the re-/hydrogenation kinetics of MgH2. Herein, Ti3C2-supported praseodymium(III) fluoride (PrF3) nanoparticles (PrF3/Ti3C2) composite was prepared by hydrothermal method, which exhibited superior catalytic activity toward hydrogen storage of MgH2. The onset temperature of dehydrogenation was reduced to 180 °C after adding 5 wt% PrF3/Ti3C2, corresponding to a reduction of 107 °C compared with pristine MgH2. About 7.0 wt% hydrogen was rapidly desorbed within 3 min at 260 °C and 6.6 wt% hydrogen was absorbed within 36 s at 200 °C for MgH2-5 wt% PrF3/Ti3C2. Moreover, MgH2-5 wt% PrF3/Ti3C2 exhibited an excellent capacity retention of 92.5% even after 10 cycles. Experimental results reveal that the electron transfer among Ti-species (Ti0, Ti2+, and Ti3+) occurred due to the striking enhanced effect of PrF3 on Ti3C2 MXene during the reaction process, and the synergistic action between Ti-species and PrF3 are responsible for the markedly enhanced hydrogen storage properties of MgH2. This study is helpful to the design and optimization of hydrogen storage materials for mobile application.