Toward a No-Reference Quality Metric for Camera-Captured Images

自然性 人工智能 图像质量 计算机科学 公制(单位) 计算机视觉 质量(理念) 对比度(视觉) 模式识别(心理学) 图像(数学) 哲学 运营管理 物理 认识论 量子力学 经济
作者
Runze Hu,Yutao Liu,Ke Gu,Xiongkuo Min,Guangtao Zhai
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (6): 3651-3664 被引量:31
标识
DOI:10.1109/tcyb.2021.3128023
摘要

Existing no-reference (NR) image quality assessment (IQA) metrics are still not convincing for evaluating the quality of the camera-captured images. Toward tackling this issue, we, in this article, establish a novel NR quality metric for quantifying the quality of the camera-captured images reliably. Since the image quality is hierarchically perceived from the low-level preliminary visual perception to the high-level semantic comprehension in the human brain, in our proposed metric, we characterize the image quality by exploiting both the low-level image properties and the high-level semantics of the image. Specifically, we extract a series of low-level features to characterize the fundamental image properties, including the brightness, saturation, contrast, noiseness, sharpness, and naturalness, which are highly indicative of the camera-captured image quality. Correspondingly, the high-level features are designed to characterize the semantics of the image. The low-level and high-level perceptual features play complementary roles in measuring the image quality. To infer the image quality, we employ the support vector regression (SVR) to map all the informative features to a single quality score. Thorough tests conducted on two standard camera-captured image databases demonstrate the effectiveness of the proposed quality metric in assessing the image quality and its superiority over the state-of-the-art NR quality metrics. The source code of the proposed metric for camera-captured images is released at https://github.com/YT2015?tab=repositories.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助小铃铛采纳,获得10
刚刚
我是老大应助哈牛柚子鹿采纳,获得10
刚刚
刚刚
明理的又柔完成签到 ,获得积分10
刚刚
刚刚
fancysummer发布了新的文献求助10
刚刚
FashionBoy应助开放鹭洋采纳,获得10
刚刚
韩soso发布了新的文献求助10
1秒前
1秒前
听雨眠发布了新的文献求助10
1秒前
1秒前
科研小白完成签到,获得积分10
1秒前
福西西完成签到,获得积分10
1秒前
2秒前
菠萝酸酸发布了新的文献求助10
2秒前
我是老大应助xz采纳,获得10
2秒前
馅饼完成签到,获得积分10
2秒前
Zx_1993应助wan采纳,获得10
3秒前
脑洞疼应助wan采纳,获得10
3秒前
张瑶发布了新的文献求助10
3秒前
魏芷容完成签到,获得积分10
3秒前
香蕉觅云应助boltos采纳,获得10
3秒前
梅子酒完成签到,获得积分10
3秒前
3秒前
温暖的云发布了新的文献求助10
4秒前
愤怒的狗完成签到,获得积分10
4秒前
慕青应助温婉的易梦采纳,获得10
4秒前
阿艺完成签到,获得积分10
4秒前
5秒前
科目三应助啊实打实的采纳,获得10
5秒前
hetao发布了新的文献求助10
5秒前
FashionBoy应助NXK采纳,获得10
5秒前
5秒前
点点完成签到,获得积分20
5秒前
稳重惜灵发布了新的文献求助10
6秒前
科研通AI6应助递年采纳,获得10
6秒前
Lxx发布了新的文献求助10
6秒前
He完成签到,获得积分10
7秒前
7秒前
小铃铛完成签到,获得积分10
7秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671