Toward a No-Reference Quality Metric for Camera-Captured Images

自然性 人工智能 图像质量 计算机科学 公制(单位) 计算机视觉 质量(理念) 对比度(视觉) 模式识别(心理学) 图像(数学) 哲学 运营管理 物理 认识论 量子力学 经济
作者
Runze Hu,Yutao Liu,Ke Gu,Xiongkuo Min,Guangtao Zhai
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (6): 3651-3664 被引量:31
标识
DOI:10.1109/tcyb.2021.3128023
摘要

Existing no-reference (NR) image quality assessment (IQA) metrics are still not convincing for evaluating the quality of the camera-captured images. Toward tackling this issue, we, in this article, establish a novel NR quality metric for quantifying the quality of the camera-captured images reliably. Since the image quality is hierarchically perceived from the low-level preliminary visual perception to the high-level semantic comprehension in the human brain, in our proposed metric, we characterize the image quality by exploiting both the low-level image properties and the high-level semantics of the image. Specifically, we extract a series of low-level features to characterize the fundamental image properties, including the brightness, saturation, contrast, noiseness, sharpness, and naturalness, which are highly indicative of the camera-captured image quality. Correspondingly, the high-level features are designed to characterize the semantics of the image. The low-level and high-level perceptual features play complementary roles in measuring the image quality. To infer the image quality, we employ the support vector regression (SVR) to map all the informative features to a single quality score. Thorough tests conducted on two standard camera-captured image databases demonstrate the effectiveness of the proposed quality metric in assessing the image quality and its superiority over the state-of-the-art NR quality metrics. The source code of the proposed metric for camera-captured images is released at https://github.com/YT2015?tab=repositories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
思苇完成签到,获得积分10
1秒前
李爱国应助桃子采纳,获得10
1秒前
YJJ完成签到,获得积分10
1秒前
ddly完成签到,获得积分10
1秒前
caitlin完成签到 ,获得积分10
1秒前
屁王发布了新的文献求助10
1秒前
慕青应助奋斗映寒采纳,获得10
1秒前
名丿发布了新的文献求助10
2秒前
哈尼妞妞122完成签到,获得积分10
2秒前
Radish完成签到 ,获得积分10
3秒前
3秒前
大胆遥发布了新的文献求助10
4秒前
义气珩发布了新的文献求助10
4秒前
Lxxx_7发布了新的文献求助10
4秒前
万能图书馆应助Ck采纳,获得10
5秒前
繁星与北斗完成签到,获得积分10
5秒前
脑洞疼应助sai采纳,获得10
5秒前
丘比特应助xiaoziyi666采纳,获得10
5秒前
wanci应助我行我素采纳,获得10
6秒前
marinemiao发布了新的文献求助10
6秒前
111完成签到 ,获得积分10
6秒前
无辜黑夜完成签到,获得积分10
7秒前
8秒前
今夜不设防完成签到,获得积分10
8秒前
李健应助木子采纳,获得10
9秒前
爆米花发布了新的文献求助10
9秒前
9秒前
9秒前
可靠的老鼠完成签到,获得积分10
10秒前
落寞依珊应助master-f采纳,获得10
10秒前
wbh发布了新的文献求助10
11秒前
田様应助hu970采纳,获得10
11秒前
科研通AI2S应助钟是一梦采纳,获得10
11秒前
zzz完成签到,获得积分20
12秒前
好玩和有趣完成签到,获得积分10
12秒前
脂蛋白抗原完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740