High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm

电子鼻 传感器阵列 卷积神经网络 计算机科学 算法 选择性 材料科学 纳米技术 实时计算 人工智能 化学 机器学习 生物化学 催化作用
作者
Mingu Kang,Incheol Cho,Jaeho Park,Jaeseok Jeong,Kichul Lee,Byeongju Lee,Dionisio Del Orbe,Kuk‐Jin Yoon,Inkyu Park
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:7 (2): 430-440 被引量:116
标识
DOI:10.1021/acssensors.1c01204
摘要

Semiconductor metal oxide (SMO) gas sensors are attracting great attention as next-generation environmental monitoring sensors. However, there are limitations to the actual application of SMO gas sensors due to their low selectivity. Although the electronic nose (E-nose) systems based on a sensor array are regarded as a solution for the selectivity issue, poor accuracy caused by the nonuniformity of the fabricated gas sensors and difficulty of real-time gas detection have yet to be resolved. In this study, these problems have been solved by fabricating uniform gas sensor arrays and applying the deep learning algorithm to the data from the sensor arrays. Nanocolumnar films of metal oxides (SnO2, In2O3, WO3, and CuO) with a high batch uniformity deposited through glancing angle deposition were used as the sensing materials. The convolutional neural network (CNN) using the input data as a matrix form was adopted as a learning algorithm, which could conduct pattern recognition of the sensor responses. Finally, real-time selective gas detection for CO, NH3, NO2, CH4, and acetone (C3H6O) gas was achieved (minimum response time of 1, 8, 5, 19, and 2 s, respectively) with an accuracy of 98% by applying preprocessed response data to the CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
djsj应助彭小布采纳,获得10
刚刚
Cymatics发布了新的文献求助10
刚刚
小尤同学完成签到,获得积分10
1秒前
化石吟完成签到,获得积分10
2秒前
劲秉应助结实的芷文采纳,获得10
2秒前
一一一完成签到,获得积分10
4秒前
科研通AI5应助尚好佳采纳,获得10
4秒前
4秒前
生技BT完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
duanduan发布了新的文献求助10
6秒前
九九完成签到,获得积分10
6秒前
梓然完成签到,获得积分10
6秒前
8秒前
8秒前
wmlsdym完成签到,获得积分10
8秒前
以笑儿过完成签到 ,获得积分10
9秒前
9秒前
聪慧雪糕发布了新的文献求助10
9秒前
9秒前
FashionBoy应助TAOS采纳,获得10
10秒前
10秒前
Lak发布了新的文献求助30
10秒前
wenhuanwenxian完成签到 ,获得积分10
10秒前
白志文完成签到,获得积分10
11秒前
11秒前
11秒前
wmlsdym发布了新的文献求助10
11秒前
lalala应助Kung采纳,获得10
11秒前
yrh发布了新的文献求助10
12秒前
12秒前
爱学习的瑞瑞子完成签到 ,获得积分10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
顾矜应助黑叔叔采纳,获得30
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479168
求助须知:如何正确求助?哪些是违规求助? 3069899
关于积分的说明 9115835
捐赠科研通 2761682
什么是DOI,文献DOI怎么找? 1515415
邀请新用户注册赠送积分活动 700906
科研通“疑难数据库(出版商)”最低求助积分说明 699931