A review of resampling techniques in particle filtering framework

重采样 颗粒过滤器 辅助粒子过滤器 算法 粒子(生态学) 计算机科学 高斯分布 贝叶斯概率 数学优化 数学 统计 人工智能 物理 卡尔曼滤波器 集合卡尔曼滤波器 海洋学 地质学 扩展卡尔曼滤波器 量子力学
作者
Chanin Kuptametee,Nattapol Aunsri
出处
期刊:Measurement [Elsevier]
卷期号:193: 110836-110836 被引量:81
标识
DOI:10.1016/j.measurement.2022.110836
摘要

A particle filtering (PF) is a sequential Bayesian filtering method suitable for non-linear non-Gaussian systems, which is widely used to estimate the states of parameters of interest that cannot be obtained directly but still relate to noisy measured data with probability masses. Possible values of targeted parameters (or particles) are sampled according to the related prior knowledge, with their probabilities (or weights) evaluated from the likelihood of being the true values of those parameters. However, most have negligible weights. The standard PF algorithm consists of three steps as particle generation, weight calculation or updating and particle regeneration, which is called resampling. The performance of PF depends greatly on the quality of particle regeneration. Resampling preserves and replicates particles with high weights, while those with low weights are eliminated. However, particle impoverishment is a side effect that reduces the diversity of particles used in the next time steps. Therefore, efficient resampling have to guarantee high likelihoods particles. This paper reviews the classification and qualitative descriptions of recent efficient particle weight-based resampling schemes and discusses their characteristics, implementations, advantages and disadvantages of each scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
青年才俊完成签到,获得积分10
2秒前
chen应助shiqi采纳,获得10
3秒前
MIRROR发布了新的文献求助10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
JayceHe应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
rain应助科研通管家采纳,获得10
4秒前
yyzhou应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
yyzhou应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
清飏应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
科研通AI6应助承一采纳,获得10
4秒前
5秒前
千与完成签到 ,获得积分20
6秒前
lwy同学发布了新的文献求助10
8秒前
mucheng发布了新的文献求助10
8秒前
8秒前
甜蜜寄文发布了新的文献求助10
9秒前
lavender123完成签到,获得积分10
11秒前
12秒前
TRY完成签到,获得积分10
12秒前
英姑应助mucheng采纳,获得10
15秒前
MIRROR完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642783
求助须知:如何正确求助?哪些是违规求助? 4759870
关于积分的说明 15018994
捐赠科研通 4801298
什么是DOI,文献DOI怎么找? 2566633
邀请新用户注册赠送积分活动 1524577
关于科研通互助平台的介绍 1484152