A microstructure engineered perovskite super anode with Li-storage life of exceeding 10,000 cycles

材料科学 锂(药物) 钙钛矿(结构) 电化学 石墨 微观结构 阳极 陶瓷 化学工程 纳米技术 冶金 电极 物理化学 内分泌学 化学 工程类 医学
作者
Junru Wang,Mengmeng Wang,Jingchao Xiao,Jiemin Dong,Yixuan Li,Li-ming Zhang,Juntao Si,Bicai Pan,Chusheng Chen,Chunhua Chen
出处
期刊:Nano Energy [Elsevier]
卷期号:94: 106972-106972 被引量:30
标识
DOI:10.1016/j.nanoen.2022.106972
摘要

Rechargeable lithium-ion batteries have largely promoted our modern civilization in the past few decades. However, nowadays lithium ion technology is still dominated by the early invented materials which suffer from low volumetric capacity and limited cycle life. Herein, a Li-ion-conducting perovskite material Li 0.33 La 0.56 Ti 0.9 Ni 0.1 O 3-δ is synthesized as a new anode material. After carbon coating and in-situ Ni-exsolution, this novel engineered material emerges as a super anode (Super A©) with all-around outstanding characteristics compared with other counterparts including the state-of-the-art anode graphite. This new anode has a low working potential (1 V vs. Li + /Li), high reversible capacity (352 or 457 mAh g −1 under different modes), ultra-long cycle life (over 10,000 cycles at 2 A g −1 ), excellent fast-charge, low-temperature and anti-overcharge performances. Particularly, Super A© can achieve a rather high volumetric capacity up to 2267 Ah L −1 (vs. 608, 837 and 2062 Ah L −1 for Li 4 Ti 5 O 12 , graphite and lithium, respectively). Based on quantumchemical calculations, we propose a new lithium storage mechanism in coupling vacancies existing in the perovskite structure. This work presents a promising next-generation anode material for commercial lithium-ion products. It also provides a new methodology to design ceramic-based electrode materials for the electrochemical rechargeable batteries. • In-situ exsolution on perovskite LLTO particles is designed. • This super anode shows all-around outstanding characteristics. • A new lithium storage mechanism is proposed. • Quantumchemical calculations is employed to verify the mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助Doctor Tang采纳,获得10
1秒前
除颤完成签到,获得积分10
1秒前
1秒前
1秒前
YOGA1115发布了新的文献求助10
2秒前
我是老大应助Kris采纳,获得10
2秒前
隐形曼青应助Bingtao_Lian采纳,获得10
2秒前
PENG应助Jay采纳,获得10
2秒前
三十七度小火炉完成签到 ,获得积分10
3秒前
lxf_123完成签到,获得积分10
3秒前
合适的猎豹完成签到,获得积分20
3秒前
Keep发布了新的文献求助10
3秒前
Singularity应助漫镜采纳,获得10
3秒前
ggbond完成签到,获得积分10
4秒前
锟斤拷发布了新的文献求助20
4秒前
5秒前
xhz完成签到,获得积分10
5秒前
袁..完成签到,获得积分10
6秒前
6秒前
照度计发布了新的文献求助10
8秒前
深情安青应助YaHe采纳,获得10
8秒前
ggbond发布了新的文献求助10
8秒前
ln发布了新的文献求助10
10秒前
wuludie应助饱饱采纳,获得10
12秒前
NexusExplorer应助刘小腿采纳,获得10
12秒前
FashionBoy应助卡卡采纳,获得10
13秒前
13秒前
英俊的铭应助ivy采纳,获得10
13秒前
传奇3应助不开心就吃糖采纳,获得10
14秒前
乐乐应助不开心就吃糖采纳,获得10
14秒前
我是大马喽给我是大马喽的求助进行了留言
14秒前
16秒前
Rosy完成签到,获得积分10
16秒前
Jasper应助吉涛采纳,获得10
17秒前
脑洞疼应助nature预备军采纳,获得10
17秒前
18秒前
Refuel完成签到,获得积分10
18秒前
19秒前
共享精神应助Zpeao采纳,获得10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515723
求助须知:如何正确求助?哪些是违规求助? 3097941
关于积分的说明 9237378
捐赠科研通 2792936
什么是DOI,文献DOI怎么找? 1532767
邀请新用户注册赠送积分活动 712272
科研通“疑难数据库(出版商)”最低求助积分说明 707233