Predicting pancreatic cancer in the UK Biobank cohort using polygenic risk scores and diabetes mellitus.

医学 内科学 胰腺癌 糖尿病 肿瘤科 生命银行 队列 癌症 队列研究 2型糖尿病 危险系数
作者
Shreya Sharma,William J Tapper,Andrew Collins,Zaed Z R Hamady
出处
期刊:Gastroenterology [Elsevier]
标识
DOI:10.1053/j.gastro.2022.01.016
摘要

Diabetes mellitus (DM) is known to be associated with Pancreatic ductal adenocarcinoma (PDAC), particularly, new-onset DM (NODM). Others have developed polygenic risk scores (PRS) associated with PDAC risk. We aimed to compare the performance of these PRS in an independent cohort to determine if they can discriminate between NODM and long standing DM (LSDM) patients with PDAC.Cases (1,042) and matched cancer free controls (10,420) were drawn from the UK Biobank. Five PRS models were calculated using single nucleotide polymorphisms (SNPs) from previous studies (Nakatochi, Galeotti, Molina, Jia and Rashkin) and a combination of these. Regression models were used to assess the association between PDAC and PRS adjusted for ancestry, smoking, DM, waist circumference, and a family history of digestive cancer. Receiver operator characteristic (ROC) curves and the area under the curve metrics (AUC) were used to assess the performance of each PRS for classifying PDAC risk.The combined PRS model achieved the highest AUC (0.605), and significantly improved a clinical risk model in this cohort (AUC=0.83, P =0.0002). Individuals within the 5th quintile have a 2.74-fold increased risk of developing PDAC versus those in the 1st quintile (P <0.001), and have a 3.05-fold increased risk of developing PDAC if they have DM versus those without DM (P <0.001). The positive predictive value (PPV) was 11.9% in participants without DM, 23.9% with LSDM and 86.7% with NODM.The PDAC related common genetic variants are more strongly associated with DM. This PRS has the potential for targeting individuals with NODM for PDAC secondary screening measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snowball完成签到,获得积分10
刚刚
1秒前
duoduozs发布了新的文献求助10
1秒前
velpro完成签到,获得积分10
1秒前
qqqq完成签到,获得积分10
1秒前
2秒前
2秒前
溪风完成签到,获得积分10
2秒前
ting发布了新的文献求助10
3秒前
4秒前
Xxxnnian发布了新的文献求助30
4秒前
听风暖完成签到 ,获得积分10
5秒前
li发布了新的文献求助10
5秒前
赘婿应助伊布采纳,获得10
5秒前
gaga完成签到,获得积分10
5秒前
小蘑菇应助reck采纳,获得10
6秒前
清风荷影完成签到 ,获得积分10
6秒前
酷波er应助动如脱兔采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
圈圈发布了新的文献求助10
8秒前
易达发布了新的文献求助10
8秒前
追梦人完成签到,获得积分10
8秒前
8秒前
实验室扛把子完成签到,获得积分10
8秒前
在水一方应助清爽忆山采纳,获得10
9秒前
小马甲应助日月山河永在采纳,获得10
9秒前
娃娃发布了新的文献求助10
10秒前
10秒前
任医生发布了新的文献求助10
10秒前
冷眼观潮完成签到,获得积分10
10秒前
10秒前
守约发布了新的文献求助10
11秒前
12秒前
凌小飞侠发布了新的文献求助10
12秒前
小T儿完成签到,获得积分10
12秒前
MicroCytoYL发布了新的文献求助10
12秒前
yzy发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672