Bayesian multivariate network meta‐analysis model for the difference in restricted mean survival times

统计 协方差 估计员 时间点 贝叶斯推理 贝叶斯概率 加速失效时间模型 比例危险模型 计算机科学 数学 推论 随机效应模型 计量经济学 荟萃分析 医学 人工智能 内科学 哲学 美学
作者
Xiaoyu Tang,Ludovic Trinquart
出处
期刊:Statistics in Medicine [Wiley]
卷期号:41 (3): 595-611 被引量:2
标识
DOI:10.1002/sim.9276
摘要

Network meta-analysis (NMA) is essential for clinical decision-making. NMA enables inference for all pair-wise comparisons between interventions available for the same indication, by using both direct evidence and indirect evidence. In randomized trials with time-to event outcome data, such as lung cancer data, conventional NMA methods rely on the hazard ratio and the proportional hazards assumption, and ignore the varying follow-up durations across trials. We introduce a novel multivariate NMA model for the difference in restricted mean survival times (RMST). Our model synthesizes all the available evidence from multiple time points simultaneously and borrows information across time points through within-study covariance and between-study covariance for the differences in RMST. We propose an estimator of the within-study covariance and we then assume it to be known. We estimate the model under the Bayesian framework. We evaluated our model by conducting a simulation study. Our multiple-time-point model yields lower mean squared error over the conventional single-time-point model at all time points, especially when the availability of evidence decreases. We illustrated the model on a network of randomized trials of second-line treatments of advanced non-small-cell lung cancer. Our multiple-time-point model yielded increased precision and detected evidence of benefit at earlier time points as compared to the single-time-point model. Our model has the advantage of providing clinically interpretable measures of treatment effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
xinlei2023完成签到,获得积分10
4秒前
耿大海发布了新的文献求助10
5秒前
yn发布了新的文献求助10
5秒前
长白发布了新的文献求助10
6秒前
今后应助铅笔995采纳,获得10
8秒前
cccong1210发布了新的文献求助30
8秒前
8秒前
学术小白完成签到,获得积分10
8秒前
Adam完成签到,获得积分10
9秒前
扁桃体不发言完成签到,获得积分10
9秒前
ye完成签到,获得积分10
10秒前
许起眸发布了新的文献求助10
11秒前
12秒前
14秒前
懒123完成签到,获得积分10
14秒前
可爱的函函应助一二一采纳,获得10
15秒前
萨特完成签到,获得积分10
15秒前
Ljy发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
希望天下0贩的0应助Elaine采纳,获得10
19秒前
一米阳光发布了新的文献求助10
19秒前
许雨青完成签到,获得积分20
19秒前
19秒前
千千完成签到,获得积分10
19秒前
小二郎应助phoenix001采纳,获得10
20秒前
天天快乐应助kanwenxian采纳,获得10
20秒前
20秒前
20秒前
贰叁发布了新的文献求助10
21秒前
李振博完成签到 ,获得积分10
22秒前
22秒前
23秒前
慕青应助tc采纳,获得10
23秒前
共享精神应助SICHEN采纳,获得10
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970008
求助须知:如何正确求助?哪些是违规求助? 3514711
关于积分的说明 11175563
捐赠科研通 3250077
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804931