Dynamic opposite learning enhanced dragonfly algorithm for solving large-scale flexible job shop scheduling problem

计算机科学 作业车间调度 蜻蜓 数学优化 比例(比率) 工作车间 动态优先级调度 流水车间调度 地铁列车时刻表 工业工程 分布式计算 工程类 数学 嵌入式系统 物理 地质学 古生物学 操作系统 布线(电子设计自动化) 量子力学 蜻蜓目
作者
Dongsheng Yang,Mingliang Wu,Di Li,Yunlang Xu,Xianyu Zhou,Zhile Yang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:238: 107815-107815 被引量:41
标识
DOI:10.1016/j.knosys.2021.107815
摘要

Flexible job shop scheduling problem (FJSP) has attracted many research interests, in particular for meta-heuristic algorithm (MA) developers due to the superior optimization performance. Dragonfly algorithm (DA) is one of recent and popular MA approaches. However, it is inevitable for DA to be trapped into local optima, especially when dealing with the complex large-scale flexible job shop scheduling problem (LSFJSP). In this paper, an improved DA, adopting a dynamic opposite learning (DOL) strategy, is proposed (namely DOLDA) to solve the LSFJSP. DOL strategy is embedded into the population initialization stage and the generation jumping stage to raise the search ability of DA. This paper uses a T-test to testify whether there are differences between the proposed algorithm and other comparison algorithms, comparison results indicate that DOLDA shows noticeable differences with other algorithms that explain the effectiveness and innovation of the proposed algorithm. The jump rate is an important parameter that determines the probability of algorithms escaping from the algorithms’ local optimal solution. This paper also considers the jump rate analysis experiments to maximize the power of the DOLDA. 28 test functions from CEC 2013 and CEC 2014 are applied to verify the performance of DOLDA, test results reveal that DOLDA owns strong search ability in coping with almost all test functions. The DOLDA also is applied to solve 15 LSFJSP instances generated by Brandimate rule, the results obtained show that DOLDA can efficiently achieve a better solution on the LSFJSP compare to compared algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
帽子完成签到,获得积分10
1秒前
2秒前
Darsine发布了新的文献求助10
2秒前
酷炫小天鹅完成签到,获得积分10
2秒前
2秒前
2秒前
疯少发布了新的文献求助10
2秒前
科研通AI6应助邱智聪采纳,获得10
3秒前
常常发布了新的文献求助10
3秒前
3秒前
4秒前
领导范儿应助嘟嘟嘟采纳,获得10
4秒前
xvping发布了新的文献求助30
4秒前
dw发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
6秒前
山前完成签到,获得积分10
6秒前
yulong完成签到 ,获得积分10
6秒前
笨笨发布了新的文献求助10
6秒前
7秒前
Rython完成签到,获得积分10
7秒前
xiaohan,JIA完成签到,获得积分10
7秒前
ic5067完成签到,获得积分10
7秒前
7秒前
踏实丹亦发布了新的文献求助10
8秒前
8秒前
8秒前
博士发布了新的文献求助10
8秒前
9秒前
qianxie完成签到,获得积分10
9秒前
9秒前
WangZ完成签到,获得积分10
9秒前
麻辣味的风完成签到,获得积分10
9秒前
9秒前
rilin发布了新的文献求助10
10秒前
11秒前
明理友琴完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949