亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic opposite learning enhanced dragonfly algorithm for solving large-scale flexible job shop scheduling problem

计算机科学 作业车间调度 蜻蜓 数学优化 比例(比率) 工作车间 动态优先级调度 流水车间调度 地铁列车时刻表 工业工程 分布式计算 工程类 数学 嵌入式系统 物理 地质学 操作系统 古生物学 布线(电子设计自动化) 量子力学 蜻蜓目
作者
Dongsheng Yang,Mingliang Wu,Di Li,Yunlang Xu,Xianyu Zhou,Zhile Yang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:238: 107815-107815 被引量:41
标识
DOI:10.1016/j.knosys.2021.107815
摘要

Flexible job shop scheduling problem (FJSP) has attracted many research interests, in particular for meta-heuristic algorithm (MA) developers due to the superior optimization performance. Dragonfly algorithm (DA) is one of recent and popular MA approaches. However, it is inevitable for DA to be trapped into local optima, especially when dealing with the complex large-scale flexible job shop scheduling problem (LSFJSP). In this paper, an improved DA, adopting a dynamic opposite learning (DOL) strategy, is proposed (namely DOLDA) to solve the LSFJSP. DOL strategy is embedded into the population initialization stage and the generation jumping stage to raise the search ability of DA. This paper uses a T-test to testify whether there are differences between the proposed algorithm and other comparison algorithms, comparison results indicate that DOLDA shows noticeable differences with other algorithms that explain the effectiveness and innovation of the proposed algorithm. The jump rate is an important parameter that determines the probability of algorithms escaping from the algorithms’ local optimal solution. This paper also considers the jump rate analysis experiments to maximize the power of the DOLDA. 28 test functions from CEC 2013 and CEC 2014 are applied to verify the performance of DOLDA, test results reveal that DOLDA owns strong search ability in coping with almost all test functions. The DOLDA also is applied to solve 15 LSFJSP instances generated by Brandimate rule, the results obtained show that DOLDA can efficiently achieve a better solution on the LSFJSP compare to compared algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangyang发布了新的文献求助30
4秒前
jcksonzhj发布了新的文献求助10
31秒前
yangyang完成签到,获得积分20
1分钟前
Cc完成签到 ,获得积分10
1分钟前
1分钟前
NattyPoe发布了新的文献求助10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得80
1分钟前
尼古拉斯铁柱完成签到 ,获得积分10
1分钟前
3sigma完成签到,获得积分10
1分钟前
jcksonzhj完成签到,获得积分10
2分钟前
2分钟前
Jasper应助ziyue采纳,获得10
2分钟前
NattyPoe发布了新的文献求助10
2分钟前
史前巨怪完成签到,获得积分0
2分钟前
3分钟前
Jerry完成签到 ,获得积分10
3分钟前
带点脑子读研求求你了完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
上官若男应助大晨采纳,获得10
3分钟前
4分钟前
NattyPoe发布了新的文献求助10
4分钟前
4分钟前
你好发布了新的文献求助10
4分钟前
科目三应助你好采纳,获得10
4分钟前
Danta发布了新的文献求助10
5分钟前
5分钟前
ziyue发布了新的文献求助10
5分钟前
5分钟前
大晨发布了新的文献求助10
5分钟前
5分钟前
river_121发布了新的文献求助10
5分钟前
Lan完成签到 ,获得积分10
5分钟前
大模型应助1123048683wm采纳,获得10
6分钟前
mxczsl完成签到,获得积分10
6分钟前
6分钟前
6分钟前
腰突患者的科研完成签到,获得积分10
6分钟前
思源应助大晨采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635044
求助须知:如何正确求助?哪些是违规求助? 4734672
关于积分的说明 14989679
捐赠科研通 4792784
什么是DOI,文献DOI怎么找? 2559896
邀请新用户注册赠送积分活动 1520161
关于科研通互助平台的介绍 1480221