Dynamic opposite learning enhanced dragonfly algorithm for solving large-scale flexible job shop scheduling problem

计算机科学 作业车间调度 蜻蜓 数学优化 比例(比率) 工作车间 动态优先级调度 流水车间调度 地铁列车时刻表 工业工程 分布式计算 工程类 数学 嵌入式系统 物理 地质学 操作系统 古生物学 布线(电子设计自动化) 量子力学 蜻蜓目
作者
Dongsheng Yang,Mingliang Wu,Di Li,Yunlang Xu,Xianyu Zhou,Zhile Yang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:238: 107815-107815 被引量:41
标识
DOI:10.1016/j.knosys.2021.107815
摘要

Flexible job shop scheduling problem (FJSP) has attracted many research interests, in particular for meta-heuristic algorithm (MA) developers due to the superior optimization performance. Dragonfly algorithm (DA) is one of recent and popular MA approaches. However, it is inevitable for DA to be trapped into local optima, especially when dealing with the complex large-scale flexible job shop scheduling problem (LSFJSP). In this paper, an improved DA, adopting a dynamic opposite learning (DOL) strategy, is proposed (namely DOLDA) to solve the LSFJSP. DOL strategy is embedded into the population initialization stage and the generation jumping stage to raise the search ability of DA. This paper uses a T-test to testify whether there are differences between the proposed algorithm and other comparison algorithms, comparison results indicate that DOLDA shows noticeable differences with other algorithms that explain the effectiveness and innovation of the proposed algorithm. The jump rate is an important parameter that determines the probability of algorithms escaping from the algorithms’ local optimal solution. This paper also considers the jump rate analysis experiments to maximize the power of the DOLDA. 28 test functions from CEC 2013 and CEC 2014 are applied to verify the performance of DOLDA, test results reveal that DOLDA owns strong search ability in coping with almost all test functions. The DOLDA also is applied to solve 15 LSFJSP instances generated by Brandimate rule, the results obtained show that DOLDA can efficiently achieve a better solution on the LSFJSP compare to compared algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ruiruirui完成签到 ,获得积分10
刚刚
刚刚
1秒前
纯真电灯胆关注了科研通微信公众号
2秒前
量子星尘发布了新的文献求助10
2秒前
达利园发布了新的文献求助10
2秒前
myx完成签到,获得积分20
2秒前
zhtgang完成签到,获得积分10
3秒前
3秒前
lizl应助Hoolyshit采纳,获得10
3秒前
yufanhui应助风趣灵珊采纳,获得10
3秒前
3秒前
wanci应助小吉麻麻采纳,获得10
3秒前
一一一完成签到,获得积分10
4秒前
大模型应助jasmine0211采纳,获得10
4秒前
4秒前
SSS发布了新的文献求助10
7秒前
就比较好发布了新的文献求助20
7秒前
Ratziel发布了新的文献求助10
7秒前
小青椒应助十一采纳,获得30
7秒前
隐形曼青应助山楂球采纳,获得10
7秒前
探索者发布了新的文献求助10
8秒前
9秒前
10秒前
庚午完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
小广完成签到,获得积分0
12秒前
英姑应助香蕉凌蝶采纳,获得10
12秒前
12秒前
13秒前
自由元冬完成签到,获得积分10
13秒前
无花果应助xiaochaoge采纳,获得10
13秒前
14秒前
JamesPei应助1397采纳,获得10
14秒前
czs完成签到,获得积分10
15秒前
wanci应助qxm采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490