Developing neural network model for predicting cardiac and cardiovascular health using bioelectrical signal processing

医学诊断 信号(编程语言) 谐波 医学 人工神经网络 信号处理 心电图 疾病 计算机科学 心脏病学 人工智能 内科学 数字信号处理 工程类 病理 电压 计算机硬件 程序设计语言 电气工程
作者
Sergey Filist,Riad Taha Al-Kasasbeh,О. В. Шаталова,Altyn Amanzholovna Aikeyeva,Nikolay Korenevskiy,Ashraf Shaqadan,Andrey Trifonov,Maksim Ilyash
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:25 (8): 908-921 被引量:22
标识
DOI:10.1080/10255842.2021.1986486
摘要

Coronary vascular disease (CHD) is one of the most fatal diseases worldwide. Cardio vascular diseases are not easily diagnosed in early disease stages. Early diagnosis is important for effective treatment, however, medical diagnoses are based on physician's personal experiences of the disease which increase time and testing cost to reach diagnosis. Physicians assess patients' condition based on electrocardiography, sonography and blood test results. In this research we develop classification model of the functional state of the cardiovascular system based on the monitoring of the evolution of the amplitudes of the first and second harmonics of the system rhythm of 0.1 Hz. We separate the signal to three streams; the first stream works with natural electro cardio signal, the other two streams are obtained as a result of frequency analysis of the amplitude- and frequency-detected electro cardio signal. We use sliding window of a demodulated electro cardio signal by means of amplitude and frequency detectors. The developed NN model showed an increase in accuracy of diagnostic efficiency by 11%. The neural network model can be trained to give accurate early detection of disease class.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
zhonglv7应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
asnly发布了新的文献求助10
刚刚
科研通AI2S应助科研通管家采纳,获得100
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
皮卡丘发布了新的文献求助40
刚刚
Orange应助科研通管家采纳,获得10
刚刚
donesonna发布了新的文献求助10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
阅读文献完成签到,获得积分10
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
予秋发布了新的文献求助10
2秒前
省人民医院完成签到 ,获得积分10
3秒前
sybs完成签到,获得积分10
3秒前
345678与发布了新的文献求助10
3秒前
4秒前
我是老大应助han采纳,获得10
4秒前
4秒前
大模型应助kjlee采纳,获得10
4秒前
4秒前
ybf发布了新的文献求助10
4秒前
听风随影发布了新的文献求助10
5秒前
大脚仙完成签到,获得积分10
5秒前
英俊的铭应助呆萌雪晴采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637232
求助须知:如何正确求助?哪些是违规求助? 4743065
关于积分的说明 14998575
捐赠科研通 4795529
什么是DOI,文献DOI怎么找? 2561991
邀请新用户注册赠送积分活动 1521497
关于科研通互助平台的介绍 1481513