U-MSAA-Net: A Multiscale Additive Attention-Based Network for Pixel-Level Identification of Finfish and Krill in Echograms

磷虾 渔业 计算机科学 人工智能 环境科学 模式识别(心理学) 生物
作者
Tunai Porto Marques,Melissa Cote,Alireza Rezvanifar,Alex Slonimer,Alexandra Branzan Albu,Kaan Ersahin,Sylvie Gauthier
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:48 (3): 853-873
标识
DOI:10.1109/joe.2023.3252759
摘要

This paper addresses the detection of finfish and krill in echograms. Finfish, in particular Pacific hake, are used both as human food and fish meal. Krill, harvested for aquaculture and aquariums, are a primary food source for finfish, including hake. Thus, spatial distributions of hake follow that of krill. Stock assessments need an accurate differentiation of krill from finfish (hake) in acoustic echograms. This paper proposes a semantic segmentation paradigm for the pixel-level classification of multi-frequency information to detect co-occurring finfish and krill. This paradigm is highly relevant for identifying cloud-like, diffuse krill aggregations that are intertwined with small, often sparse and sometimes dense schools of finfish. We propose U-MSAA-Net, a deep learning U-Net-like framework with novel multi-scale additive attention (MSAA) modules. MSAA modules allow us to leverage all contextual and local information from feature maps available at any given level of the decoding phase of the network, yielding an efficient suppression of the feature responses from regions with lesser semantic value. Experimental results on a new finfish and krill data set spanning across nine months of acoustic data and covering various situations show that U-MSAA-Net outperforms both traditional, texture-based machine learning methods, and deep learning methods based on state-of-the-art semantic segmentation networks. Additional experiments on a data set containing schools of herring and salmon confirm the versatility of U-MSAA-Net and its superiority in terms of accuracy and ability to detect schools of varying sizes. U-MSAA-Net is the first step in creating a comprehensive tool for stock and ecosystem assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能的小叮当完成签到,获得积分0
1秒前
1秒前
1秒前
COCO完成签到,获得积分10
1秒前
hdd发布了新的文献求助10
1秒前
小华乂跤417完成签到,获得积分10
1秒前
2秒前
JIE完成签到 ,获得积分10
2秒前
3秒前
CMUSK完成签到,获得积分10
3秒前
丫丫完成签到 ,获得积分10
3秒前
落落完成签到,获得积分10
3秒前
细腻天蓝完成签到 ,获得积分10
4秒前
酷小裤发布了新的文献求助10
4秒前
怎么说来着完成签到,获得积分10
4秒前
evvj完成签到,获得积分10
4秒前
Cassiel完成签到,获得积分10
5秒前
zhc990807发布了新的文献求助10
6秒前
jun完成签到,获得积分10
6秒前
pp完成签到,获得积分10
7秒前
vffg完成签到,获得积分10
7秒前
蔷薇完成签到,获得积分10
7秒前
乐乐应助zhc990807采纳,获得10
9秒前
10秒前
10秒前
科研小白发布了新的文献求助10
10秒前
222完成签到,获得积分10
10秒前
香蕉半邪完成签到,获得积分10
11秒前
可爱的坤完成签到,获得积分10
11秒前
Wcc完成签到,获得积分10
11秒前
酷小裤完成签到,获得积分10
12秒前
协和_子鱼完成签到,获得积分0
12秒前
千桑客完成签到,获得积分10
12秒前
龙痕完成签到,获得积分10
12秒前
酷波er应助科研通管家采纳,获得10
13秒前
jyy应助科研通管家采纳,获得10
13秒前
梓泽丘墟应助科研通管家采纳,获得20
13秒前
13秒前
CC完成签到 ,获得积分10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818798
关于积分的说明 7922523
捐赠科研通 2478563
什么是DOI,文献DOI怎么找? 1320404
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443