U-MSAA-Net: A Multiscale Additive Attention-Based Network for Pixel-Level Identification of Finfish and Krill in Echograms

磷虾 渔业 计算机科学 人工智能 环境科学 模式识别(心理学) 生物
作者
Tunai Porto Marques,Melissa Cote,Alireza Rezvanifar,Alex Slonimer,Alexandra Branzan Albu,Kaan Ersahin,Sylvie Gauthier
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:48 (3): 853-873
标识
DOI:10.1109/joe.2023.3252759
摘要

This paper addresses the detection of finfish and krill in echograms. Finfish, in particular Pacific hake, are used both as human food and fish meal. Krill, harvested for aquaculture and aquariums, are a primary food source for finfish, including hake. Thus, spatial distributions of hake follow that of krill. Stock assessments need an accurate differentiation of krill from finfish (hake) in acoustic echograms. This paper proposes a semantic segmentation paradigm for the pixel-level classification of multi-frequency information to detect co-occurring finfish and krill. This paradigm is highly relevant for identifying cloud-like, diffuse krill aggregations that are intertwined with small, often sparse and sometimes dense schools of finfish. We propose U-MSAA-Net, a deep learning U-Net-like framework with novel multi-scale additive attention (MSAA) modules. MSAA modules allow us to leverage all contextual and local information from feature maps available at any given level of the decoding phase of the network, yielding an efficient suppression of the feature responses from regions with lesser semantic value. Experimental results on a new finfish and krill data set spanning across nine months of acoustic data and covering various situations show that U-MSAA-Net outperforms both traditional, texture-based machine learning methods, and deep learning methods based on state-of-the-art semantic segmentation networks. Additional experiments on a data set containing schools of herring and salmon confirm the versatility of U-MSAA-Net and its superiority in terms of accuracy and ability to detect schools of varying sizes. U-MSAA-Net is the first step in creating a comprehensive tool for stock and ecosystem assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鄂浩轩完成签到,获得积分20
1秒前
2秒前
2秒前
彭于晏应助足球采纳,获得30
2秒前
Moudexiao完成签到 ,获得积分10
4秒前
jc_HSC发布了新的文献求助10
7秒前
水濑心源完成签到,获得积分10
7秒前
秦磊完成签到,获得积分10
8秒前
ywd完成签到,获得积分10
9秒前
9秒前
11秒前
13秒前
14秒前
丰富青文完成签到,获得积分10
14秒前
1250241652发布了新的文献求助30
15秒前
bgerivers发布了新的文献求助10
15秒前
nianshu完成签到 ,获得积分0
16秒前
Red完成签到,获得积分10
16秒前
椎名真白发布了新的文献求助200
18秒前
ZZZ发布了新的文献求助10
19秒前
冲冲完成签到,获得积分10
19秒前
jc_HSC完成签到,获得积分10
20秒前
20秒前
QIQI发布了新的文献求助10
21秒前
后会无期完成签到,获得积分10
21秒前
邸增楼发布了新的文献求助10
25秒前
英姑应助凯旋采纳,获得10
25秒前
ergatoid完成签到,获得积分10
26秒前
栢君苏mini完成签到,获得积分10
28秒前
30秒前
31秒前
31秒前
单薄乐珍完成签到 ,获得积分0
32秒前
ATREE发布了新的文献求助10
35秒前
35秒前
35秒前
Possession发布了新的文献求助10
36秒前
倒霉兔子完成签到,获得积分0
36秒前
凯旋完成签到,获得积分20
36秒前
H哈完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565478
求助须知:如何正确求助?哪些是违规求助? 4650535
关于积分的说明 14691776
捐赠科研通 4592467
什么是DOI,文献DOI怎么找? 2519635
邀请新用户注册赠送积分活动 1492028
关于科研通互助平台的介绍 1463244