U-MSAA-Net: A Multiscale Additive Attention-Based Network for Pixel-Level Identification of Finfish and Krill in Echograms

磷虾 渔业 计算机科学 人工智能 环境科学 模式识别(心理学) 生物
作者
Tunai Porto Marques,Melissa Cote,Alireza Rezvanifar,Alex Slonimer,Alexandra Branzan Albu,Kaan Ersahin,Sylvie Gauthier
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:48 (3): 853-873
标识
DOI:10.1109/joe.2023.3252759
摘要

This paper addresses the detection of finfish and krill in echograms. Finfish, in particular Pacific hake, are used both as human food and fish meal. Krill, harvested for aquaculture and aquariums, are a primary food source for finfish, including hake. Thus, spatial distributions of hake follow that of krill. Stock assessments need an accurate differentiation of krill from finfish (hake) in acoustic echograms. This paper proposes a semantic segmentation paradigm for the pixel-level classification of multi-frequency information to detect co-occurring finfish and krill. This paradigm is highly relevant for identifying cloud-like, diffuse krill aggregations that are intertwined with small, often sparse and sometimes dense schools of finfish. We propose U-MSAA-Net, a deep learning U-Net-like framework with novel multi-scale additive attention (MSAA) modules. MSAA modules allow us to leverage all contextual and local information from feature maps available at any given level of the decoding phase of the network, yielding an efficient suppression of the feature responses from regions with lesser semantic value. Experimental results on a new finfish and krill data set spanning across nine months of acoustic data and covering various situations show that U-MSAA-Net outperforms both traditional, texture-based machine learning methods, and deep learning methods based on state-of-the-art semantic segmentation networks. Additional experiments on a data set containing schools of herring and salmon confirm the versatility of U-MSAA-Net and its superiority in terms of accuracy and ability to detect schools of varying sizes. U-MSAA-Net is the first step in creating a comprehensive tool for stock and ecosystem assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助猪猪hero采纳,获得10
1秒前
qqq发布了新的文献求助10
1秒前
在水一方应助0534335采纳,获得10
1秒前
2秒前
3秒前
Conccuc发布了新的文献求助10
3秒前
5秒前
ADJ完成签到,获得积分10
5秒前
yyy发布了新的文献求助10
5秒前
6秒前
鲤鱼笑南完成签到,获得积分10
7秒前
谦让的博完成签到,获得积分10
8秒前
8秒前
白粥发布了新的文献求助10
9秒前
10秒前
10秒前
李健应助猪猪hero采纳,获得10
10秒前
11秒前
Ava应助小羊采纳,获得10
11秒前
11秒前
12秒前
孙智远发布了新的文献求助10
12秒前
12秒前
高大的映波关注了科研通微信公众号
12秒前
13秒前
13秒前
鱼可完成签到 ,获得积分10
13秒前
大强发布了新的文献求助10
14秒前
jackguihx完成签到,获得积分20
14秒前
14秒前
nani260完成签到,获得积分10
14秒前
16秒前
16秒前
16秒前
18秒前
SHASHA发布了新的文献求助10
18秒前
善学以致用应助yyy采纳,获得10
19秒前
19秒前
bkagyin应助叶绿体机智采纳,获得10
19秒前
KY发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424743
求助须知:如何正确求助?哪些是违规求助? 4539089
关于积分的说明 14165404
捐赠科研通 4456188
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483