U-MSAA-Net: A Multiscale Additive Attention-Based Network for Pixel-Level Identification of Finfish and Krill in Echograms

磷虾 渔业 计算机科学 人工智能 环境科学 模式识别(心理学) 生物
作者
Tunai Porto Marques,Melissa Cote,Alireza Rezvanifar,Alex Slonimer,Alexandra Branzan Albu,Kaan Ersahin,Sylvie Gauthier
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:48 (3): 853-873
标识
DOI:10.1109/joe.2023.3252759
摘要

This paper addresses the detection of finfish and krill in echograms. Finfish, in particular Pacific hake, are used both as human food and fish meal. Krill, harvested for aquaculture and aquariums, are a primary food source for finfish, including hake. Thus, spatial distributions of hake follow that of krill. Stock assessments need an accurate differentiation of krill from finfish (hake) in acoustic echograms. This paper proposes a semantic segmentation paradigm for the pixel-level classification of multi-frequency information to detect co-occurring finfish and krill. This paradigm is highly relevant for identifying cloud-like, diffuse krill aggregations that are intertwined with small, often sparse and sometimes dense schools of finfish. We propose U-MSAA-Net, a deep learning U-Net-like framework with novel multi-scale additive attention (MSAA) modules. MSAA modules allow us to leverage all contextual and local information from feature maps available at any given level of the decoding phase of the network, yielding an efficient suppression of the feature responses from regions with lesser semantic value. Experimental results on a new finfish and krill data set spanning across nine months of acoustic data and covering various situations show that U-MSAA-Net outperforms both traditional, texture-based machine learning methods, and deep learning methods based on state-of-the-art semantic segmentation networks. Additional experiments on a data set containing schools of herring and salmon confirm the versatility of U-MSAA-Net and its superiority in terms of accuracy and ability to detect schools of varying sizes. U-MSAA-Net is the first step in creating a comprehensive tool for stock and ecosystem assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小凯同学完成签到,获得积分10
2秒前
ddd完成签到 ,获得积分10
3秒前
万能图书馆应助茶茶采纳,获得10
4秒前
5秒前
ckb0901发布了新的文献求助10
5秒前
缓慢的煎蛋完成签到,获得积分10
6秒前
大卫戴完成签到 ,获得积分10
7秒前
wangfang0228完成签到 ,获得积分10
8秒前
9秒前
傻瓜完成签到 ,获得积分10
9秒前
Ava应助阔达的太阳采纳,获得10
10秒前
内向薯片完成签到,获得积分10
10秒前
INNE完成签到,获得积分10
10秒前
圈圈完成签到 ,获得积分10
12秒前
拼搏绿柳完成签到,获得积分10
12秒前
pengpengpeng完成签到,获得积分10
12秒前
ckb0901完成签到,获得积分10
12秒前
ffffwj2024完成签到,获得积分10
12秒前
13秒前
是朱星星啊完成签到 ,获得积分10
14秒前
顺心的芝麻完成签到 ,获得积分10
15秒前
多多完成签到 ,获得积分10
16秒前
16秒前
抹茶牛奶配布丁完成签到 ,获得积分10
17秒前
贪玩的立辉完成签到 ,获得积分10
17秒前
17秒前
xuan21发布了新的文献求助10
18秒前
18秒前
19秒前
浮游应助subat采纳,获得10
19秒前
疯子不风完成签到,获得积分10
19秒前
天天快乐应助笑嘻嘻采纳,获得10
20秒前
20秒前
嚯哈哈哈哈哈哈哈哈哈完成签到 ,获得积分10
20秒前
20秒前
一轮太阳和幻想完成签到,获得积分10
22秒前
23秒前
andrew完成签到 ,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305017
求助须知:如何正确求助?哪些是违规求助? 4451211
关于积分的说明 13851392
捐赠科研通 4338545
什么是DOI,文献DOI怎么找? 2381993
邀请新用户注册赠送积分活动 1377139
关于科研通互助平台的介绍 1344501