远景图
随机森林
计算机科学
Boosting(机器学习)
数据挖掘
机器学习
人工智能
辍学(神经网络)
支持向量机
学习迁移
地质学
地貌学
构造盆地
作者
Kai Zhou,Tao Sun,Yue Liu,Mei Feng,Jialiang Tang,Luting Mao,Wenbin Pu,Junqi Huang
出处
期刊:Minerals
[MDPI AG]
日期:2023-05-13
卷期号:13 (5): 669-669
被引量:2
摘要
The development of mineral prospectivity mapping (MPM), which aims to outline and prioritize mineral exploration targets, has been spurred by advances in data-driven machine learning algorithms. Supervised data-driven MPM is a typical few-shot task, suffering from a scarcity of labeled data, the over-fitting of models and an uncertainty of predictions. The main objective of this contribution is to propose a robust framework of few-shot learning (FSL), combining data augmentation and transfer learning to enable the generation of prospectivity models with excellent predictive efficiency and low uncertainty. The mineral systems approach was used to transfer a conceptual mineral system into mappable exploration criteria. Synthetic minority over-sampling technique (SMOTE) was employed to augment and balance the labeled dataset, allowing for model pre-training with the large synthetic training dataset of a source domain. The knowledge derived from pre-trained models was then transferred to the target domain by fine-tuning, and the prospectivity model was generated in light of over-fitting and uncertainty assessments. The proposed FSL framework was applied to tungsten prospectivity mapping in southern Jiangxi Province. The results indicated that the SMOTE-ed balanced dataset boosted the classification accuracy in the training process. The FSL models yielded an arch-shaped prediction point pattern which was favorable for focusing potential targets with high probability and low uncertainty. The FSL models achieved a high predictive performance (test AUC = 0.9172) and the lowest quantitative over-fitting value compared to the models derived from the benchmark algorithms of random forest and support vector machine. Four levels of potential targeting zones, considering both predictive efficiency and uncertainty, were extracted from the resulting FSL prospectivity map. The final high-potential and low-risk exploration targets only cover 4.27% of the area, but capture 41.53% of known tungsten deposits, thus achieving a superior predictive performance. This study highlights the capability of FSL framework to control over-fitting and generate high-confidence exploration targets with low levels of uncertainty.
科研通智能强力驱动
Strongly Powered by AbleSci AI