已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prospectivity Mapping of Tungsten Mineralization in Southern Jiangxi Province Using Few-Shot Learning

远景图 随机森林 计算机科学 Boosting(机器学习) 数据挖掘 机器学习 人工智能 辍学(神经网络) 支持向量机 学习迁移 地质学 地貌学 构造盆地
作者
Kai Zhou,Tao Sun,Yue Liu,Mei Feng,Jialiang Tang,Luting Mao,Wenbin Pu,Junqi Huang
出处
期刊:Minerals [MDPI AG]
卷期号:13 (5): 669-669 被引量:2
标识
DOI:10.3390/min13050669
摘要

The development of mineral prospectivity mapping (MPM), which aims to outline and prioritize mineral exploration targets, has been spurred by advances in data-driven machine learning algorithms. Supervised data-driven MPM is a typical few-shot task, suffering from a scarcity of labeled data, the over-fitting of models and an uncertainty of predictions. The main objective of this contribution is to propose a robust framework of few-shot learning (FSL), combining data augmentation and transfer learning to enable the generation of prospectivity models with excellent predictive efficiency and low uncertainty. The mineral systems approach was used to transfer a conceptual mineral system into mappable exploration criteria. Synthetic minority over-sampling technique (SMOTE) was employed to augment and balance the labeled dataset, allowing for model pre-training with the large synthetic training dataset of a source domain. The knowledge derived from pre-trained models was then transferred to the target domain by fine-tuning, and the prospectivity model was generated in light of over-fitting and uncertainty assessments. The proposed FSL framework was applied to tungsten prospectivity mapping in southern Jiangxi Province. The results indicated that the SMOTE-ed balanced dataset boosted the classification accuracy in the training process. The FSL models yielded an arch-shaped prediction point pattern which was favorable for focusing potential targets with high probability and low uncertainty. The FSL models achieved a high predictive performance (test AUC = 0.9172) and the lowest quantitative over-fitting value compared to the models derived from the benchmark algorithms of random forest and support vector machine. Four levels of potential targeting zones, considering both predictive efficiency and uncertainty, were extracted from the resulting FSL prospectivity map. The final high-potential and low-risk exploration targets only cover 4.27% of the area, but capture 41.53% of known tungsten deposits, thus achieving a superior predictive performance. This study highlights the capability of FSL framework to control over-fitting and generate high-confidence exploration targets with low levels of uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孟筱完成签到 ,获得积分10
1秒前
持卿发布了新的文献求助10
1秒前
大牛牛应助C0cc采纳,获得10
2秒前
大牛牛应助C0cc采纳,获得10
2秒前
大牛牛应助C0cc采纳,获得10
2秒前
搜集达人应助耳机单蹦采纳,获得10
2秒前
持卿发布了新的文献求助10
2秒前
beloved完成签到 ,获得积分10
6秒前
H语发布了新的文献求助10
7秒前
fane发布了新的文献求助10
11秒前
3113129605完成签到 ,获得积分10
17秒前
安静无招完成签到 ,获得积分10
17秒前
情怀应助荒谬采纳,获得10
17秒前
aya完成签到 ,获得积分20
18秒前
21秒前
研友_Z30GJ8完成签到 ,获得积分0
24秒前
科研fw完成签到 ,获得积分10
26秒前
sissiarno应助fane采纳,获得30
33秒前
沐舒发布了新的文献求助10
37秒前
38秒前
hy发布了新的文献求助10
39秒前
yaoyaoyao完成签到 ,获得积分10
40秒前
领导范儿应助ddx采纳,获得10
41秒前
慕青应助GK采纳,获得10
41秒前
个木发布了新的文献求助10
42秒前
wcy完成签到 ,获得积分10
43秒前
dhxhxbdnnx发布了新的文献求助10
44秒前
yang完成签到 ,获得积分10
45秒前
47秒前
mjsdx完成签到 ,获得积分10
48秒前
科目三应助科研通管家采纳,获得10
48秒前
orixero应助科研通管家采纳,获得10
48秒前
ddx发布了新的文献求助10
50秒前
充电宝应助忧郁的易烟采纳,获得10
51秒前
Yifan2024应助学医自救采纳,获得10
52秒前
54秒前
科研小哥应助想游泳的鹰采纳,获得10
55秒前
dolabmu完成签到 ,获得积分10
57秒前
hy完成签到,获得积分20
58秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392752
求助须知:如何正确求助?哪些是违规求助? 3003307
关于积分的说明 8808666
捐赠科研通 2690088
什么是DOI,文献DOI怎么找? 1473431
科研通“疑难数据库(出版商)”最低求助积分说明 681571
邀请新用户注册赠送积分活动 674491