Structure damage identification in dams using sparse polynomial chaos expansion combined with hybrid K-means clustering optimizer and genetic algorithm

聚类分析 稳健性(进化) 水准点(测量) 计算机科学 数学优化 算法 有限元法 结构健康监测 遗传算法 鉴定(生物学) 数学 工程类 人工智能 结构工程 植物 生物 基因 生物化学 化学 大地测量学 地理
作者
Yifei Li,Hoang-Le Minh,Samir Khatir,Thanh Sang-To,Thanh Cuong‐Le,Maosen Cao,Magd Abdel Wahab
出处
期刊:Engineering Structures [Elsevier]
卷期号:283: 115891-115891 被引量:45
标识
DOI:10.1016/j.engstruct.2023.115891
摘要

Structural damage identification plays a crucial role in structural health monitoring. In this study, a novelty method for structural damage identification is developed, which employs an advanced surrogate modelling technique to drive a new hybrid optimization strategy, namely a combination of K-means clustering optimizer and genetic algorithm (HKOGA). The core of this method is using the reliable sparse polynomial chaos expansion model as a cost-effective substitute for the computationally expensive structural finite element models, thus greatly improving the efficiency of the optimization strategy in finding the optimal value of the objective function. To evaluate the performance of this hybrid optimization strategy, seven optimization algorithms are selected and compared with it for 23 classical benchmark functions, and the comparative results show that the HKOGA has the best performance. Taking a small-scaled laboratory dam as an example, the efficiency and reliability of the proposed method to cope with the problems concerning finite element model updating and structural damage identification are explored. Two important findings are as follows. (i) For finite element model updating, compared to the conventional method based on iterative optimization, the proposed method improves computational efficiency by a factor of 59 while maintaining computational accuracy. (ii) For structural damage identification, leaving aside the huge leap in computational efficiency, the HKOGA has a faster convergence rate, stronger robustness, and higher accuracy than its sub-algorithm K-means clustering optimizer (KO). The results show that this method can be severed as an extremely efficient and potential tool to identify damage in large and complex structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的书雁完成签到,获得积分10
刚刚
朱朱发布了新的文献求助10
1秒前
1秒前
看不懂完成签到,获得积分10
1秒前
科研通AI6.1应助蛋总采纳,获得30
1秒前
柴先生完成签到,获得积分10
2秒前
Magic发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
Zhao完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
追寻依风发布了新的文献求助10
4秒前
qwp发布了新的文献求助10
4秒前
看看发布了新的文献求助10
5秒前
5秒前
眯眯眼的裙子完成签到,获得积分10
7秒前
Lucia完成签到 ,获得积分10
7秒前
大盆完成签到,获得积分10
7秒前
开朗醉波发布了新的文献求助10
8秒前
8秒前
泡菜鱼oo完成签到,获得积分20
9秒前
9秒前
Muddle完成签到,获得积分10
9秒前
wacfpp完成签到,获得积分10
9秒前
10秒前
cindy发布了新的文献求助10
10秒前
1234发布了新的文献求助10
10秒前
疯大仙外向太清完成签到,获得积分10
10秒前
浮泷完成签到,获得积分10
12秒前
12秒前
英姑应助赵小美采纳,获得10
12秒前
12秒前
Muddle发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
柠檬不萌完成签到,获得积分10
13秒前
D追完成签到,获得积分20
13秒前
鱼王木木完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933