Structure damage identification in dams using sparse polynomial chaos expansion combined with hybrid K-means clustering optimizer and genetic algorithm

聚类分析 稳健性(进化) 水准点(测量) 计算机科学 数学优化 算法 有限元法 结构健康监测 遗传算法 鉴定(生物学) 数学 工程类 人工智能 结构工程 植物 生物 基因 生物化学 化学 大地测量学 地理
作者
Yifei Li,Hoang-Le Minh,Samir Khatir,Thanh Sang-To,Thanh Cuong‐Le,Maosen Cao,Magd Abdel Wahab
出处
期刊:Engineering Structures [Elsevier]
卷期号:283: 115891-115891 被引量:45
标识
DOI:10.1016/j.engstruct.2023.115891
摘要

Structural damage identification plays a crucial role in structural health monitoring. In this study, a novelty method for structural damage identification is developed, which employs an advanced surrogate modelling technique to drive a new hybrid optimization strategy, namely a combination of K-means clustering optimizer and genetic algorithm (HKOGA). The core of this method is using the reliable sparse polynomial chaos expansion model as a cost-effective substitute for the computationally expensive structural finite element models, thus greatly improving the efficiency of the optimization strategy in finding the optimal value of the objective function. To evaluate the performance of this hybrid optimization strategy, seven optimization algorithms are selected and compared with it for 23 classical benchmark functions, and the comparative results show that the HKOGA has the best performance. Taking a small-scaled laboratory dam as an example, the efficiency and reliability of the proposed method to cope with the problems concerning finite element model updating and structural damage identification are explored. Two important findings are as follows. (i) For finite element model updating, compared to the conventional method based on iterative optimization, the proposed method improves computational efficiency by a factor of 59 while maintaining computational accuracy. (ii) For structural damage identification, leaving aside the huge leap in computational efficiency, the HKOGA has a faster convergence rate, stronger robustness, and higher accuracy than its sub-algorithm K-means clustering optimizer (KO). The results show that this method can be severed as an extremely efficient and potential tool to identify damage in large and complex structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助孔小白采纳,获得10
1秒前
1秒前
舒适逊完成签到 ,获得积分10
1秒前
科研通AI5应助11111采纳,获得10
2秒前
CipherSage应助hxn采纳,获得10
2秒前
4秒前
深情安青应助shatang采纳,获得10
4秒前
zxx5012发布了新的文献求助10
4秒前
芥丶子完成签到,获得积分10
5秒前
曾开心完成签到,获得积分10
5秒前
平淡南霜发布了新的文献求助10
5秒前
Blue_Pig发布了新的文献求助10
6秒前
李健的小迷弟应助逐风采纳,获得30
6秒前
yatou5651发布了新的文献求助10
7秒前
Akim应助和谐乌龟采纳,获得10
7秒前
peng完成签到,获得积分20
8秒前
CipherSage应助汉关采纳,获得10
8秒前
9秒前
9秒前
9秒前
丘比特应助XM采纳,获得10
9秒前
bkagyin应助Blue_Pig采纳,获得10
10秒前
11秒前
12秒前
12秒前
完美世界应助加油加油采纳,获得10
13秒前
13秒前
14秒前
ns发布了新的文献求助30
16秒前
11111发布了新的文献求助10
16秒前
17秒前
药学牛马完成签到,获得积分10
17秒前
张zi发布了新的文献求助10
18秒前
yatou5651发布了新的文献求助10
19秒前
19秒前
小魏不学无术完成签到,获得积分10
19秒前
木棉发布了新的文献求助10
19秒前
A1234发布了新的文献求助10
20秒前
英俊的铭应助弄井采纳,获得30
20秒前
小二郎应助Dean采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808