Structure damage identification in dams using sparse polynomial chaos expansion combined with hybrid K-means clustering optimizer and genetic algorithm

聚类分析 稳健性(进化) 水准点(测量) 计算机科学 数学优化 算法 有限元法 结构健康监测 遗传算法 鉴定(生物学) 数学 工程类 人工智能 结构工程 植物 生物 基因 生物化学 化学 大地测量学 地理
作者
Yifei Li,Hoang-Le Minh,Samir Khatir,Thanh Sang-To,Thanh Cuong‐Le,Maosen Cao,Magd Abdel Wahab
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:283: 115891-115891 被引量:45
标识
DOI:10.1016/j.engstruct.2023.115891
摘要

Structural damage identification plays a crucial role in structural health monitoring. In this study, a novelty method for structural damage identification is developed, which employs an advanced surrogate modelling technique to drive a new hybrid optimization strategy, namely a combination of K-means clustering optimizer and genetic algorithm (HKOGA). The core of this method is using the reliable sparse polynomial chaos expansion model as a cost-effective substitute for the computationally expensive structural finite element models, thus greatly improving the efficiency of the optimization strategy in finding the optimal value of the objective function. To evaluate the performance of this hybrid optimization strategy, seven optimization algorithms are selected and compared with it for 23 classical benchmark functions, and the comparative results show that the HKOGA has the best performance. Taking a small-scaled laboratory dam as an example, the efficiency and reliability of the proposed method to cope with the problems concerning finite element model updating and structural damage identification are explored. Two important findings are as follows. (i) For finite element model updating, compared to the conventional method based on iterative optimization, the proposed method improves computational efficiency by a factor of 59 while maintaining computational accuracy. (ii) For structural damage identification, leaving aside the huge leap in computational efficiency, the HKOGA has a faster convergence rate, stronger robustness, and higher accuracy than its sub-algorithm K-means clustering optimizer (KO). The results show that this method can be severed as an extremely efficient and potential tool to identify damage in large and complex structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
冯宝宝发布了新的文献求助10
2秒前
Wangxiaoyan发布了新的文献求助10
2秒前
2秒前
曾曾发布了新的文献求助10
3秒前
3秒前
qhy发布了新的文献求助10
6秒前
6秒前
包容的世倌完成签到 ,获得积分10
6秒前
7秒前
慕容迎松发布了新的文献求助10
8秒前
乔孟婷完成签到,获得积分10
8秒前
强健的梦蕊完成签到 ,获得积分10
8秒前
9秒前
lyon完成签到 ,获得积分10
9秒前
野原完成签到,获得积分10
9秒前
阿圆发布了新的文献求助10
11秒前
12秒前
思源应助不打烊吗采纳,获得10
13秒前
手拿小铁锤完成签到,获得积分20
14秒前
qingkong完成签到 ,获得积分10
14秒前
TCA循环发布了新的文献求助10
14秒前
Strongly完成签到,获得积分10
14秒前
15秒前
上官若男应助星沉静默采纳,获得10
16秒前
竹筏过海完成签到,获得积分0
16秒前
zihanwang应助射天狼采纳,获得10
17秒前
17秒前
17秒前
魁梧的文轩完成签到 ,获得积分10
19秒前
顺心若魔完成签到,获得积分20
20秒前
20秒前
21秒前
21秒前
清秀的懿轩完成签到 ,获得积分10
22秒前
23秒前
pepsisery完成签到,获得积分10
23秒前
Ava应助大气的忆枫采纳,获得10
24秒前
HH发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998074
求助须知:如何正确求助?哪些是违规求助? 3537636
关于积分的说明 11272063
捐赠科研通 3276726
什么是DOI,文献DOI怎么找? 1807114
邀请新用户注册赠送积分活动 883710
科研通“疑难数据库(出版商)”最低求助积分说明 810007