工作流程
药效团
计算机科学
联轴节(管道)
产量(工程)
软件
吞吐量
偶联反应
人工智能
酰胺
工具箱
组合化学
软件工程
化学
程序设计语言
工程类
数据库
材料科学
催化作用
机械工程
有机化学
立体化学
电信
冶金
无线
作者
Babak Mahjour,Jillian Hoffstadt,Tim Cernak
标识
DOI:10.26434/chemrxiv-2023-2tfdv
摘要
High throughput experimentation (HTE) is a common practice in the pharmaceutical industry. Medicinal chemists design reaction arrays to optimize the yield of couplings between building blocks and/or pharmacophores. Popular reactions attempted by medicinal chemists include the amide coupling, Suzuki coupling, and Buchwald-Hartwig coupling. We show how the artificial intelligence (AI) language model ChatGPT can automatically formulate reaction arrays for these common reactions based on the literature corpus it was trained on. Furthermore, we showcase how ChatGPT results can be directly translated into inputs for the HTE management software phactor, which enables automated execution and analysis of assays. This workflow is experimentally demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI