I $^{2}$ RNN: An Incremental and Interpretable Recurrent Neural Network for Encrypted Traffic Classification

人工智能 可解释性 加密 计算机科学 循环神经网络 机器学习 符号 人工神经网络 理论计算机科学 算法 数学 算术 计算机安全
作者
Zhuoxue Song,Ziming Zhao,Fan Zhang,Gang Xiong,Guang Cheng,Xinjie Zhao,Shize Guo,Binbin Chen
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:10
标识
DOI:10.1109/tdsc.2023.3245411
摘要

Traffic classification occupies a significant role in cybersecurity and network management. The widespread of encryption transmission protocols such as SSL/TLS has led to the dominance of deep learning based approaches. In cybersecurity, strong adversaries often complicate their strategies by constantly developing emerging attacks. Meanwhile, security practitioners desire to grasp the reasons for inference results. However, existing deep learning approaches lack efficient adaptation for incremental traffic types and often have less interpretability. In this paper, we propose I $^{2}$ RNN, an Incremental and Interpretable Recurrent Neural Network for encrypted traffic classification. The I $^{2}$ RNN proposes a novel propagation process to extract the sequence fingerprints from sessions with local robustness. Meanwhile, this proposal provides interpretability including time-series feature attribution and inter-class similarity portrait. Moreover, we design I $^{2}$ RNN in an incremental manner to adapt to emerging traffic types. The I $^{2}$ RNN only needs to train an additional set of parameters for the newly added traffic type rather than retraining the whole model with the entire dataset. Extensive experimental results show that our I $^{2}$ RNN can achieve remarkable performance in traffic classification, incremental learning, and model interpretability. Compared with other local interpretability methods, our I $^{2}$ RNN exhibits excellent stability, robustness, and effectiveness in the interpretation of network traffic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不咸怎么叫盐焗鸡翅完成签到,获得积分10
1秒前
2秒前
Ran-HT完成签到,获得积分10
2秒前
啵叽一口发布了新的文献求助10
3秒前
3秒前
行止完成签到,获得积分10
3秒前
蘓蘓完成签到,获得积分20
3秒前
华青ww完成签到,获得积分10
3秒前
4秒前
刻苦鹭洋完成签到,获得积分10
4秒前
汉堡包应助小白鼠采纳,获得10
4秒前
关七应助MIRROR采纳,获得10
4秒前
王提发布了新的文献求助10
5秒前
呱呱乐完成签到,获得积分10
5秒前
chenchen完成签到 ,获得积分10
7秒前
深情安青应助不可思宇采纳,获得10
8秒前
luo发布了新的文献求助10
8秒前
酷波er应助雪白鸿涛采纳,获得10
8秒前
9秒前
9秒前
lucilleshen完成签到,获得积分10
9秒前
1391451653完成签到,获得积分10
9秒前
10秒前
yy发布了新的文献求助10
11秒前
大模型应助陶醉水云采纳,获得10
11秒前
江璃发布了新的文献求助10
12秒前
nn完成签到,获得积分10
12秒前
12秒前
可爱的函函应助354采纳,获得10
13秒前
13秒前
13秒前
科研通AI2S应助whuhustwit采纳,获得10
13秒前
14秒前
范浩然完成签到 ,获得积分10
14秒前
景胜杰发布了新的文献求助10
14秒前
Vyasa完成签到,获得积分10
15秒前
Amy发布了新的文献求助10
15秒前
17秒前
yang应助顺心绮兰采纳,获得10
17秒前
lyx完成签到 ,获得积分20
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135387
求助须知:如何正确求助?哪些是违规求助? 2786384
关于积分的说明 7777028
捐赠科研通 2442291
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847