Supervised Deep Learning for Head Motion Correction in PET

人工智能 计算机科学 计算机视觉 跟踪(教育) 转化(遗传学) 运动(物理) 匹配移动 特征(语言学) 主管(地质) 旋转(数学) 心理学 教育学 生物化学 化学 语言学 哲学 地貌学 基因 地质学
作者
Tianyi Zeng,Jiazhen Zhang,Enette Mae Revilla,Eléonore V. Lieffrig,Xi Fang,Yihuan Lu,John A. Onofrey
出处
期刊:Lecture Notes in Computer Science 卷期号:: 194-203 被引量:14
标识
DOI:10.1007/978-3-031-16440-8_19
摘要

Head movement is a major limitation in brain positron emission tomography (PET) imaging, which results in image artifacts and quantification errors. Head motion correction plays a critical role in quantitative image analysis and diagnosis of nervous system diseases. However, to date, there is no approach that can track head motion continuously without using an external device. Here, we develop a deep learning-based algorithm to predict rigid motion for brain PET by lever-aging existing dynamic PET scans with gold-standard motion measurements from external Polaris Vicra tracking. We propose a novel Deep Learning for Head Motion Correction (DL-HMC) methodology that consists of three components: (i) PET input data encoder layers; (ii) regression layers to estimate the six rigid motion transformation parameters; and (iii) feature-wise transformation (FWT) layers to condition the network to tracer time-activity. The input of DL-HMC is sampled pairs of one-second 3D cloud representations of the PET data and the output is the prediction of six rigid transformation motion parameters. We trained this network in a supervised manner using the Vicra motion tracking information as gold-standard. We quantitatively evaluate DL-HMC by comparing to gold-standard Vicra measurements and qualitatively evaluate the reconstructed images as well as perform region of interest standard uptake value (SUV) measurements. An algorithm ablation study was performed to determine the contributions of each of our DL-HMC design choices to network performance. Our results demonstrate accurate motion prediction performance for brain PET using a data-driven registration approach without external motion tracking hardware. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_miccai2022.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助丰富幻悲采纳,获得10
2秒前
2秒前
MDW完成签到,获得积分20
3秒前
duna完成签到,获得积分10
3秒前
烟花应助轻松迎夏qqa采纳,获得10
3秒前
FIN应助gc采纳,获得10
3秒前
FIN应助gc采纳,获得10
3秒前
vinh完成签到,获得积分10
4秒前
万能图书馆应助哔哔采纳,获得10
5秒前
野性的烧鹅完成签到,获得积分10
8秒前
8秒前
风-FBDD完成签到,获得积分10
10秒前
11秒前
引子完成签到,获得积分10
11秒前
1⑩发布了新的文献求助30
12秒前
LZJ完成签到,获得积分10
13秒前
14秒前
jj11jj22jj33完成签到,获得积分10
15秒前
图治完成签到,获得积分10
16秒前
ln完成签到 ,获得积分10
17秒前
17秒前
知性的土豆完成签到,获得积分10
20秒前
慕青应助tonight采纳,获得10
26秒前
26秒前
30秒前
xx完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
小包发布了新的文献求助10
33秒前
nebula应助faye采纳,获得10
34秒前
34秒前
糯米大王完成签到,获得积分10
34秒前
SYLH应助1⑩采纳,获得20
36秒前
余额发布了新的文献求助10
36秒前
lym97完成签到 ,获得积分10
36秒前
苏曼青完成签到,获得积分10
37秒前
tonight发布了新的文献求助10
39秒前
默默问晴完成签到,获得积分10
41秒前
supergdb完成签到,获得积分10
41秒前
42秒前
djiwisksk66应助AoAoo采纳,获得10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951130
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082541
捐赠科研通 3226963
什么是DOI,文献DOI怎么找? 1784094
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801089