LC-SRM combined with machine learning enables fast identification and quantification of bacterial pathogens in urinary tract infections

泌尿系统 鉴定(生物学) 计算机科学 计算生物学 微生物学 医学 机器学习 生物 内科学 植物
作者
Clarisse Gotti,Florence Roux‐Dalvai,Ève Bérubé,Antoine Lacombe-Rastoll,Mickaël Leclercq,Cristina C. Jacob,Maurice Boissinot,Cláudia P.B. Martins,Neloni Wijeratne,Michel G. Bergeron,Arnaud Droit
标识
DOI:10.1101/2024.05.31.596829
摘要

ABSTRACT Urinary tract infections (UTIs) are a worldwide health problem. Fast and accurate detection of bacterial infection is essential to provide appropriate antibiotherapy to patients and to avoid the emergence of drug-resistant pathogens. While the gold standard requires 24h to 48h of bacteria culture prior MALDI-TOF species identification, we propose a culture-free workflow, enabling a bacterial identification and quantification in less than 4 hours using 1mL of urine. After a rapid and automatable sample preparation, a signature of 82 bacterial peptides, defined by machine learning, was monitored in LC-MS, to distinguish the 15 species causing 84% of the UTIs. The combination of the sensitivity of the SRM mode on a triple quadrupole TSQ Altis instrument and the robustness of capillary flow enabled us to analyze up to 75 samples per day, with 99.2% accuracy on bacterial inoculations of healthy urines. We have also shown our method can be used to quantify the spread of the infection, from 8×10 4 to 3×10 7 CFU/mL. Finally, the workflow was validated on 45 inoculated urines and on 84 UTI-positive urine from patients, with respectively 93.3% and 87.1% of agreement with the culture-MALDI procedure at a level above 1×10 5 CFU/mL corresponding to an infection requiring antibiotherapy. HIGHLIGHTS – LC-MS-SRM and machine learning to identify and quantify bacterial species of UTI – Fast sample preparation without bacterial culture and high-throughput MS analysis – Accurate quantification through calibration curves for 15 species of UTIs – Validation on inoculations (93% accuracy) and on patients specimens (87% accuracy)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
好好学习完成签到,获得积分10
2秒前
王钟萱完成签到,获得积分10
2秒前
结实白柏发布了新的文献求助10
2秒前
FashionBoy应助拼搏的从雪采纳,获得10
2秒前
MelonWong发布了新的文献求助10
3秒前
心安完成签到,获得积分10
3秒前
5秒前
5秒前
6秒前
7秒前
1111完成签到,获得积分20
7秒前
斯文败类应助homeland采纳,获得10
8秒前
nan完成签到,获得积分10
8秒前
baidu发布了新的文献求助10
9秒前
慕青应助Viper3采纳,获得30
10秒前
思源应助忧心的襄采纳,获得10
11秒前
252525发布了新的文献求助10
11秒前
12秒前
14秒前
深情安青应助结实白柏采纳,获得30
15秒前
刘泗青应助杨洋采纳,获得10
15秒前
16秒前
16秒前
17秒前
小马甲应助叮当采纳,获得10
19秒前
科研通AI5应助科研临时工采纳,获得10
20秒前
赵丽媛发布了新的文献求助10
20秒前
未了发布了新的文献求助10
20秒前
xyj完成签到,获得积分10
21秒前
21秒前
车窗外发布了新的文献求助10
22秒前
shaun完成签到,获得积分10
22秒前
NexusExplorer应助超级的鞅采纳,获得10
24秒前
SciGPT应助keren采纳,获得10
25秒前
28秒前
29秒前
小太阳完成签到,获得积分20
31秒前
亚鲁完成签到,获得积分10
31秒前
bkagyin应助科研小白采纳,获得10
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488