LC-SRM combined with machine learning enables fast identification and quantification of bacterial pathogens in urinary tract infections

泌尿系统 鉴定(生物学) 计算机科学 计算生物学 微生物学 医学 机器学习 生物 内科学 植物
作者
Clarisse Gotti,Florence Roux‐Dalvai,Ève Bérubé,Antoine Lacombe-Rastoll,Mickaël Leclercq,Cristina C. Jacob,Maurice Boissinot,Cláudia P.B. Martins,Neloni Wijeratne,Michel G. Bergeron,Arnaud Droit
标识
DOI:10.1101/2024.05.31.596829
摘要

ABSTRACT Urinary tract infections (UTIs) are a worldwide health problem. Fast and accurate detection of bacterial infection is essential to provide appropriate antibiotherapy to patients and to avoid the emergence of drug-resistant pathogens. While the gold standard requires 24h to 48h of bacteria culture prior MALDI-TOF species identification, we propose a culture-free workflow, enabling a bacterial identification and quantification in less than 4 hours using 1mL of urine. After a rapid and automatable sample preparation, a signature of 82 bacterial peptides, defined by machine learning, was monitored in LC-MS, to distinguish the 15 species causing 84% of the UTIs. The combination of the sensitivity of the SRM mode on a triple quadrupole TSQ Altis instrument and the robustness of capillary flow enabled us to analyze up to 75 samples per day, with 99.2% accuracy on bacterial inoculations of healthy urines. We have also shown our method can be used to quantify the spread of the infection, from 8×10 4 to 3×10 7 CFU/mL. Finally, the workflow was validated on 45 inoculated urines and on 84 UTI-positive urine from patients, with respectively 93.3% and 87.1% of agreement with the culture-MALDI procedure at a level above 1×10 5 CFU/mL corresponding to an infection requiring antibiotherapy. HIGHLIGHTS – LC-MS-SRM and machine learning to identify and quantify bacterial species of UTI – Fast sample preparation without bacterial culture and high-throughput MS analysis – Accurate quantification through calibration curves for 15 species of UTIs – Validation on inoculations (93% accuracy) and on patients specimens (87% accuracy)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wzq发布了新的文献求助30
1秒前
1秒前
吴凡完成签到,获得积分10
3秒前
Fox完成签到,获得积分10
3秒前
科研通AI5应助研究僧-卓采纳,获得10
4秒前
肉肉肉发布了新的文献求助10
6秒前
烂漫映之完成签到 ,获得积分10
7秒前
嘟嘟完成签到 ,获得积分10
8秒前
小女完成签到,获得积分10
10秒前
10秒前
林白生完成签到 ,获得积分10
11秒前
汉堡包应助Luo采纳,获得10
13秒前
14秒前
研究僧-卓发布了新的文献求助10
19秒前
星辰大海应助眼睛大墨镜采纳,获得10
21秒前
22秒前
Orange应助suchui采纳,获得10
22秒前
没有密码关注了科研通微信公众号
25秒前
JamesPei应助zhuge采纳,获得10
25秒前
肉肉肉完成签到,获得积分10
25秒前
25秒前
dsfsd完成签到,获得积分10
26秒前
27秒前
28秒前
涵涵涵hh发布了新的文献求助10
28秒前
29秒前
32秒前
34秒前
lvlvlvsh发布了新的文献求助10
36秒前
36秒前
LL完成签到,获得积分10
37秒前
40秒前
Huang完成签到,获得积分10
40秒前
suchui发布了新的文献求助10
41秒前
Dean举报Komorebi求助涉嫌违规
41秒前
今后应助小可爱采纳,获得10
41秒前
jeep先生完成签到,获得积分10
42秒前
没有密码发布了新的文献求助10
42秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545514
求助须知:如何正确求助?哪些是违规求助? 3977133
关于积分的说明 12315793
捐赠科研通 3645296
什么是DOI,文献DOI怎么找? 2007495
邀请新用户注册赠送积分活动 1043068
科研通“疑难数据库(出版商)”最低求助积分说明 931929