LC-SRM combined with machine learning enables fast identification and quantification of bacterial pathogens in urinary tract infections

泌尿系统 鉴定(生物学) 计算机科学 计算生物学 微生物学 医学 机器学习 生物 内科学 植物
作者
Clarisse Gotti,Florence Roux‐Dalvai,Ève Bérubé,Antoine Lacombe-Rastoll,Mickaël Leclercq,Cristina C. Jacob,Maurice Boissinot,Cláudia P.B. Martins,Neloni Wijeratne,Michel G. Bergeron,Arnaud Droit
标识
DOI:10.1101/2024.05.31.596829
摘要

ABSTRACT Urinary tract infections (UTIs) are a worldwide health problem. Fast and accurate detection of bacterial infection is essential to provide appropriate antibiotherapy to patients and to avoid the emergence of drug-resistant pathogens. While the gold standard requires 24h to 48h of bacteria culture prior MALDI-TOF species identification, we propose a culture-free workflow, enabling a bacterial identification and quantification in less than 4 hours using 1mL of urine. After a rapid and automatable sample preparation, a signature of 82 bacterial peptides, defined by machine learning, was monitored in LC-MS, to distinguish the 15 species causing 84% of the UTIs. The combination of the sensitivity of the SRM mode on a triple quadrupole TSQ Altis instrument and the robustness of capillary flow enabled us to analyze up to 75 samples per day, with 99.2% accuracy on bacterial inoculations of healthy urines. We have also shown our method can be used to quantify the spread of the infection, from 8×10 4 to 3×10 7 CFU/mL. Finally, the workflow was validated on 45 inoculated urines and on 84 UTI-positive urine from patients, with respectively 93.3% and 87.1% of agreement with the culture-MALDI procedure at a level above 1×10 5 CFU/mL corresponding to an infection requiring antibiotherapy. HIGHLIGHTS – LC-MS-SRM and machine learning to identify and quantify bacterial species of UTI – Fast sample preparation without bacterial culture and high-throughput MS analysis – Accurate quantification through calibration curves for 15 species of UTIs – Validation on inoculations (93% accuracy) and on patients specimens (87% accuracy)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
种田发布了新的文献求助10
刚刚
Frank完成签到 ,获得积分10
1秒前
慕青应助孤独梦安采纳,获得10
1秒前
领导范儿应助务实豁采纳,获得30
1秒前
TheMonster完成签到,获得积分10
2秒前
自由溪灵完成签到,获得积分10
3秒前
听雨完成签到,获得积分10
3秒前
3秒前
3秒前
秋菲菲完成签到,获得积分10
5秒前
Hello应助半夜炒茄子采纳,获得10
5秒前
ding应助Momo采纳,获得10
5秒前
王香香发布了新的文献求助10
6秒前
Cholera完成签到,获得积分10
7秒前
愉快惜海发布了新的文献求助30
7秒前
zhang完成签到,获得积分10
7秒前
小蘑菇应助典雅的静采纳,获得10
8秒前
物理幽灵发布了新的文献求助10
8秒前
无限雨南完成签到,获得积分10
8秒前
阿北完成签到,获得积分10
8秒前
9秒前
xia_完成签到,获得积分10
9秒前
优雅的沛春完成签到 ,获得积分10
9秒前
bkagyin应助星沉静默采纳,获得10
9秒前
9秒前
9秒前
聪明发布了新的文献求助10
10秒前
乐乐应助spy采纳,获得10
10秒前
10秒前
FashionBoy应助美好的莫英采纳,获得10
11秒前
泽ze完成签到,获得积分10
11秒前
感动傀斗完成签到,获得积分10
12秒前
lwz2688完成签到,获得积分10
12秒前
深情安青应助流萤采纳,获得10
13秒前
13秒前
wonderingria发布了新的文献求助10
13秒前
Jerry发布了新的文献求助10
15秒前
星渊完成签到,获得积分10
15秒前
一只五条悟完成签到,获得积分10
15秒前
聪明完成签到,获得积分20
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124