材料科学
研磨
超声波传感器
陶瓷
机制(生物学)
复合材料
振动
声学
物理
量子力学
作者
Wenchao Zhang,Enming Cui,Cheng Wang,Baoquan Zhang,Jiwei Jin,Peng Fei Zhang,W. Wu,Mingwei Wang
出处
期刊:Multidiscipline Modeling in Materials and Structures
[Emerald (MCB UP)]
日期:2024-05-16
卷期号:20 (4): 561-576
标识
DOI:10.1108/mmms-01-2024-0024
摘要
Purpose An investigation was conducted into the impact of various process parameters on the surface and subsurface quality of glass-ceramic materials, as well as the mechanism of material removal and crack formation, through the use of ultrasonic-assisted grinding. Design/methodology/approach A mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. A series of simulations and experiments were conducted to investigate the impact of process parameters on crack depth, surface roughness, and surface topography during ultrasonic-assisted surface and axial grinding. Additionally, the mechanism of crack formation was explored. Findings During ultrasonic-assisted grinding, the average grinding forces are between 0.4–1.0 N, which is much smaller than that of ordinary grinding (1.0–3.5 N). In surface grinding, the maximum surface stresses between the workpiece and the tool gradually decrease with the tool speed. The surface stresses of the workpiece increase with the grinding depth, and the depth of subsurface cracks increases with the grinding depth. With the increase of the axial grinding speed, the subsurface damage depth increases. The roughness increases from 0.780um/1.433um. Originality/value A mathematical model of crack propagation in ultrasonic-assisted grinding was established, and the mechanism of crack formation was described through the model. The deformation involved in the grinding process is large, and the FEM-SPH modeling method is used to solve the problem that the results of the traditional finite element method are not convergent and the calculation efficiency is low.
科研通智能强力驱动
Strongly Powered by AbleSci AI