Systematic Review of Prognosis Models in Predicting Tooth Loss in Periodontitis

牙周炎 牙缺失 检查表 过度拟合 医学 统计的 梅德林 数据提取 混淆 预测建模 牙科 统计 计算机科学 机器学习 数学 心理学 内科学 口腔健康 法学 认知心理学 人工神经网络 政治学
作者
Dian Yi Chow,John Rong Hao Tay,Gustavo G. Nascimento
出处
期刊:Journal of Dental Research [SAGE]
卷期号:103 (6): 596-604 被引量:2
标识
DOI:10.1177/00220345241237448
摘要

This study reviews and appraises the methodological and reporting quality of prediction models for tooth loss in periodontitis patients, including the use of regression and machine learning models. Studies involving prediction modeling for tooth loss in periodontitis patients were screened. A search was performed in MEDLINE via PubMed, Embase, and CENTRAL up to 12 February 2022, with citation chasing. Studies exploring model development or external validation studies for models assessing tooth loss in periodontitis patients for clinical use at any time point, with all prediction horizons in English, were considered. Studies were excluded if models were not developed for use in periodontitis patients, were not developed or validated on any data set, predicted outcomes other than tooth loss, or were prognostic factor studies. The CHARMS checklist was used for data extraction, TRIPOD to assess reporting quality, and PROBAST to assess the risk of bias. In total, 4,661 records were screened, and 45 studies were included. Only 26 studies reported any kind of performance measure. The median C-statistic reported was 0.671 (range, 0.57–0.97). All studies were at a high risk of bias due to inappropriate handling of missing data (96%), inappropriate evaluation of model performance (92%), and lack of accounting for model overfitting in evaluating model performance (68%). Many models predicting tooth loss in periodontitis are available, but studies evaluating these models are at a high risk of bias. Model performance measures are likely to be overly optimistic and might not be replicated in clinical use. While this review is unable to recommend any model for clinical practice, it has collated the existing models and their model performance at external validation and their associated sample sizes, which would be helpful to identify promising models for future external validation studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
changfox完成签到,获得积分10
1秒前
wangfeng完成签到 ,获得积分10
3秒前
PeterBeau完成签到 ,获得积分10
4秒前
崩溃完成签到,获得积分10
4秒前
个性的大地完成签到,获得积分10
15秒前
雷九万班完成签到 ,获得积分10
16秒前
slp完成签到 ,获得积分10
21秒前
炼丹炉完成签到,获得积分10
23秒前
神勇的天问完成签到 ,获得积分10
27秒前
洁净的静芙完成签到 ,获得积分10
44秒前
Ruuo616完成签到 ,获得积分10
44秒前
无奈的邪欢完成签到,获得积分20
46秒前
风烟完成签到 ,获得积分10
46秒前
昊男的宝贝完成签到,获得积分10
48秒前
48秒前
朴素小霜完成签到 ,获得积分10
49秒前
口布鲁完成签到,获得积分20
55秒前
1分钟前
wez19015发布了新的文献求助10
1分钟前
优雅的千雁完成签到,获得积分10
1分钟前
福娃完成签到,获得积分10
1分钟前
benyu完成签到,获得积分10
1分钟前
xiaoluoluo完成签到,获得积分10
1分钟前
温暖糖豆完成签到 ,获得积分10
1分钟前
聪慧语山完成签到 ,获得积分10
1分钟前
猪猪hero应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
猪猪hero应助科研通管家采纳,获得10
1分钟前
1分钟前
猪猪hero应助科研通管家采纳,获得10
1分钟前
滴答完成签到,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
飘逸问薇完成签到 ,获得积分10
1分钟前
wangyu完成签到,获得积分10
1分钟前
2分钟前
谢尔顿完成签到,获得积分10
2分钟前
MADAO完成签到 ,获得积分10
2分钟前
wez19015完成签到,获得积分20
2分钟前
Touching完成签到 ,获得积分10
2分钟前
xiang完成签到 ,获得积分10
2分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111635
求助须知:如何正确求助?哪些是违规求助? 2761773
关于积分的说明 7667236
捐赠科研通 2416791
什么是DOI,文献DOI怎么找? 1282920
科研通“疑难数据库(出版商)”最低求助积分说明 619187
版权声明 599499