分解水
图层(电子)
材料科学
光电子学
化学工程
纳米技术
化学
催化作用
工程类
生物化学
光催化
作者
Jidong Sun,Jingkun Wang,Xun Zhang,Yuliang Liu,Junjie Guo,Jujie Luo,Bingshe Xu,Tianbao Li
标识
DOI:10.1016/j.ijhydene.2024.04.309
摘要
Because of its advantageous band gap and band edge, BiVO4 is thought to be a viable photoanode for photoelectrochemical (PEC) water splitting. However, its photoelectrochemical water splitting capability is primarily restricted by photogenerated carrier recombination. In order to address this issue, a hole storage layer (HSL) VO2 was deposited onto a W-doped BiVO4 photoanode through photoelectric deposition in this study. During PEC water oxidation, the ultrathin VO2 layer's reversible V4+ species can regulate the hole-storage process, improving hole extraction capacity and reducing charge recombination. As expected, under AM 1.5 G illumination, the optimized W–BiVO4/VO2/Co-Pi photoanode exhibits a photocurrent density of 5.6 mA/cm2 at 1.23 V vs. RHE with an onset potential of 0.28 V. This value exceeds pure BiVO4 (1.1 mA/cm2) by around 409%. Based on results from experiments, the charge transfer efficiency of the W–BiVO4/VO2/Co-Pi photoanode reaches 96.3%, showing excellent PEC water splitting performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI