氧化磷酸化
下调和上调
冠状动脉粥样硬化
磷酸化
化学
功能(生物学)
医学
疾病
细胞生物学
冠心病
生物化学
癌症研究
内科学
生物
基因
作者
Yandong Liu,Yicheng Wu,Chao Wang,Weilin Hu,Sili Zou,Huiqiong Ren,Yong Zuo,Lefeng Qu
标识
DOI:10.1016/j.yjmcc.2024.05.010
摘要
Background Atherosclerosis is a chronic pathology, leading to acute coronary heart disease or stroke. MiR-127 has been found significantly upregulated in advanced atherosclerosis. But its function in atherosclerosis remains unexplored. We explored the role of miR-127-3p in regulating atherosclerosis development and its downstream mechanisms. Methods The expression profile of miR-127 in carotid atherosclerotic plaques of 23 patients with severe carotid stenosis was detected by RT-qPCR and in situ hybridization. Primary bone marrow-derived macrophages (BMDM) stimulated with oxidized low-density lipoprotein were used as an in vitro model. CCK-8, EdU, RT-qPCR, and flow cytometry were used to detect the proliferative capacity and polarization of BMDM, which were infected by lentivirus-carrying plasmid to upregulate or downregulate miR-127-3p expression, respectively. RNA sequencing combined with bioinformatic analysis and targeted fatty acid metabolomics approach were used to detect the transcriptome and lipid metabolites. The association between miR-127-3p and its target was verified by dual-luciferase activity reporting and Western blotting. Oxygen consumption rate of BMDM were detected using seahorse analysis. High-cholesterol-diet-fed low density lipoprotein deficient (LDLR−/−) mice, with-or-without carotid tandem-stenosis surgery, were treated with miR-127-3p agomir or antagomir to examine its effect on plaque development and stability. Results miR-127-3p, not -5p, is elevated in human advanced carotid atheroma and its expression is positively associated with macrophage accummulation in plaques. In vitro, miR-127-3p-overexpressed macrophage exhibites increased proliferation capacity and facilitates M1 polariztion whereas the contrary trend is present in miR-127-3p-inhibited macrophage. Stearoyl-CoA desaturase-1 (SCD1) is one potential target of miR-127-3p. miR-127-3p mimics decreases the activity of 3′ untranslated regions of SCD-1. Furthermore, miR-127-3p downregulates SCD1 expression, and reversing the expression of SCD1 attenuates the increased proliferation induced by miR-127-3p overexpression in macrophage. miR-127-3p overexpression could also lead to decreased content of unsaturated fatty acids(UFAs), increased content of acetyl CoA and increased level of oxidative phosphorylation. In vivo, miR-127-3p agomir significantly increases atherosclerosis progression, macrophage proliferation and decreases SCD1 expression and the content of UFAs in aortic plaques of LDLR−/− mice. Conversely, miR-127-3p antagomir attenuated atherosclerosis, macrophage proliferation in LDLR−/− mice, and enhanced carotid plaque stability in mice with vulnerable plaque induced. Conclusion MiR-127-3p enhances proliferation in macrophages through downregulating SCD-1 expression and decreasing the content of unsaturated fatty acid, thereby promoting atherosclerosis development and decreasing plaque stability. miR-127-3p/SCD1/UFAs might provide potential therapeutic target for anti-inflammation and atherosclerosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI