An Efficient and Robust Fingerprint-Based Localization Method for Multifloor Indoor Environment

计算机科学 稳健性(进化) 指纹识别 指纹(计算) 人工智能 人工神经网络 Boosting(机器学习) 模式识别(心理学) 无线 特征提取 钥匙(锁) 机器学习 数据挖掘 实时计算 电信 生物化学 化学 基因 计算机安全
作者
Yunming Zhao,Wei Gong,Li Li,Baoxian Zhang,Cheng Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 3927-3941 被引量:8
标识
DOI:10.1109/jiot.2023.3298603
摘要

Fingerprint-based indoor localization is one of the most promising solutions for various Intelligent Internet of Things (IIoT) systems. However, recent studies show that the key design challenges of current fingerprint-based localization techniques come from the following three aspects: 1) temporal variation caused by various patterns of IIoT device operations and stochastic fluctuation of wireless signals, 2) spatial unevenness of collected RSSI samples due to complex multi-floor environments, and 3) high feature sparsity of collected RSSI samples in large areas. To address these challenges, we present a localization architecture for multi-floor indoor localization in multi-building environment and accordingly propose a fingerprint-based localization method (referred to as GrowNetLoc) based on Gradient Boosting Neural Network (GrowNet) and Long Short-Term Memory (LSTM) network. Regarding building/floor identification, the gradient ensemble model GrowNet is utilized for extracting the mapping relationship between uneven RSSI samples and building/floor indices. Regarding location estimation, LSTM network is adopted as one layer of base learner to extract temporal features of RSSI samples, and a gradient boosting strategy is further used for overcoming the sample sparsity issue and improving the location estimation performance. Extensive experiments are conducted on real datasets and the results demonstrate that GrowNetLoc has superior localization accuracy and robustness performance compared with the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执执发布了新的文献求助10
刚刚
充电宝应助hgc采纳,获得10
2秒前
4秒前
888发布了新的文献求助10
4秒前
科研通AI5应助小材不菜采纳,获得30
4秒前
4秒前
wuyi发布了新的文献求助10
4秒前
NiLou发布了新的文献求助10
6秒前
小二郎应助Hey采纳,获得10
6秒前
独特觅儿完成签到,获得积分10
6秒前
万泉部诗人完成签到,获得积分10
7秒前
7秒前
8秒前
自信念云发布了新的文献求助10
8秒前
有魅力荟发布了新的文献求助10
9秒前
慕青应助飘雪采纳,获得10
10秒前
Bydoctor完成签到 ,获得积分10
10秒前
11秒前
Owen应助赋川采纳,获得10
11秒前
乐乐应助葳蕤采纳,获得10
12秒前
12秒前
乐乐应助笑点低的鸿采纳,获得10
12秒前
灰灰发布了新的文献求助10
14秒前
15秒前
张阳阳发布了新的文献求助10
16秒前
orixero应助wuyi采纳,获得10
16秒前
17秒前
17秒前
17秒前
mumu完成签到 ,获得积分20
17秒前
18秒前
烟花应助自信念云采纳,获得10
18秒前
18离婚且带娃完成签到,获得积分10
20秒前
charon完成签到,获得积分10
20秒前
健忘凝荷发布了新的文献求助10
21秒前
huhu发布了新的文献求助30
21秒前
Hey发布了新的文献求助10
21秒前
devin578632发布了新的文献求助10
22秒前
22秒前
啊哈完成签到 ,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542931
求助须知:如何正确求助?哪些是违规求助? 3120348
关于积分的说明 9342270
捐赠科研通 2818338
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722168
科研通“疑难数据库(出版商)”最低求助积分说明 712992