Neural extended Kalman filters for learning and predicting dynamics of structural systems

扩展卡尔曼滤波器 推论 计算机科学 人工神经网络 人工智能 卡尔曼滤波器 机器学习 参数化复杂度 潜变量 系统动力学 控制理论(社会学) 算法 控制(管理)
作者
Wei Liu,Zhilu Lai,Kiran Bacsa,Eleni Chatzi
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (2): 1037-1052 被引量:4
标识
DOI:10.1177/14759217231179912
摘要

Accurate structural response prediction forms a main driver for structural health monitoring and control applications. This often requires the proposed model to adequately capture the underlying dynamics of complex structural systems. In this work, we utilize a learnable Extended Kalman Filter (EKF), named the Neural Extended Kalman Filter (Neural EKF) throughout this paper, for learning the latent evolution dynamics of complex physical systems. The Neural EKF is a generalized version of the conventional EKF, where the modeling of process dynamics and sensory observations can be parameterized by neural networks, therefore learned by end-to-end training. The method is implemented under the variational inference framework with the EKF conducting inference from sensing measurements. Typically, conventional variational inference models are parameterized by neural networks independent of the latent dynamics models. This characteristic makes the inference and reconstruction accuracy weakly based on the dynamics models and renders the associated training inadequate. In this work, we show that the structure imposed by the Neural EKF is beneficial to the learning process. We demonstrate the efficacy of the framework on both simulated and real-world structural monitoring datasets, with the results indicating significant predictive capabilities of the proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力安南完成签到,获得积分10
1秒前
1秒前
明亮巨人完成签到 ,获得积分10
1秒前
Akim应助与我常在采纳,获得10
2秒前
3秒前
3秒前
6秒前
远航渔夫完成签到 ,获得积分10
6秒前
wanci应助兔农糖采纳,获得10
6秒前
7秒前
逸风完成签到 ,获得积分10
7秒前
LIKUN发布了新的文献求助20
9秒前
10秒前
桐桐应助玖梦采纳,获得10
10秒前
12秒前
14秒前
Lucas应助得得得采纳,获得10
15秒前
15秒前
16秒前
Benhnhk21完成签到,获得积分10
17秒前
大头完成签到,获得积分0
17秒前
端庄擎汉完成签到,获得积分10
17秒前
中意发布了新的文献求助10
17秒前
科研通AI2S应助flyxga870825采纳,获得10
17秒前
科研通AI2S应助flyxga870825采纳,获得10
17秒前
Yuzuruyan完成签到,获得积分10
17秒前
科研通AI2S应助flyxga870825采纳,获得10
17秒前
无花果应助flyxga870825采纳,获得10
17秒前
bkagyin应助世间再无延毕采纳,获得10
20秒前
21秒前
甜美天磊完成签到,获得积分10
21秒前
xgs发布了新的文献求助10
21秒前
DY完成签到,获得积分10
22秒前
22秒前
23秒前
李健应助枝桠采纳,获得10
23秒前
zer完成签到,获得积分10
23秒前
善学以致用应助pl采纳,获得10
24秒前
瑞瑞完成签到,获得积分10
25秒前
swallow完成签到,获得积分10
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138292
求助须知:如何正确求助?哪些是违规求助? 2789301
关于积分的说明 7790796
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625971
版权声明 601065