An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm

光伏系统 算法 人口 计算机科学 数学优化 数学 工程类 电气工程 社会学 人口学
作者
Adam Słowik,Krzysztof Cpałka,Yu Xue,Aneta Hapka
出处
期刊:Applied Energy [Elsevier BV]
卷期号:364: 123208-123208 被引量:6
标识
DOI:10.1016/j.apenergy.2024.123208
摘要

This article discusses the problem of accurate and efficient modeling of photovoltaic (PV) panels. It is a highly nonlinear problem. The following models were considered: a single diode model, a double diode model, a triple diode model, a four diode model, a module model (a poly-crystalline Photowatt-PWP201 module and a mono-crystalline STM6-40/36 module). The article presents a mathematical notation of these models, a detailed interpretation of their individual components, and a comparison of obtained results. To increase the effectiveness of modeling, a new population-based algorithm which can handle complex objective functions and a large number of decision variables was developed. This is important for the problem of identifying the parameters of PV cell models because each evaluation of the objective function requires calculating a set of points that determine the current–voltage characteristics. Moreover, in the considered problem a solution is searched with the use of the trial and error method. The proposed algorithm is called Micro Adaptive Fuzzy Cuckoo Search Optimization (μAFCSO). The μAFCSO algorithm uses several new mechanisms that were developed based on our experience with population-based algorithms. The use of these mechanisms has produced very good results in simulations. In the scope of simulation studies, the μAFCSO algorithm was used for parameter extraction in six PV cell models and was also applied to optimize fifteen typical test functions. The test functions were considered in order to demonstrate that our algorithm can be used to solve typical problems processed using population-based algorithms. The results obtained in this study were compared with the results obtained using well-established algorithms. The results obtained in this work are better or comparable to them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崔崔完成签到,获得积分10
1秒前
1秒前
cheryjay发布了新的文献求助10
1秒前
NexusExplorer应助小张同学采纳,获得10
2秒前
王欣发布了新的文献求助10
2秒前
林岚发布了新的文献求助10
2秒前
小蘑菇应助神勇路人采纳,获得10
3秒前
冷酷夏真完成签到 ,获得积分10
4秒前
kyle竣完成签到,获得积分10
4秒前
wzy完成签到 ,获得积分10
4秒前
5秒前
充电宝应助cheryjay采纳,获得10
5秒前
sooyaaa发布了新的文献求助10
5秒前
木子水告完成签到,获得积分10
6秒前
6秒前
崔崔发布了新的文献求助10
7秒前
李健应助停停停采纳,获得10
9秒前
yhw完成签到,获得积分10
10秒前
大胆的芸遥完成签到,获得积分10
10秒前
小马甲应助jihe采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助150
11秒前
11秒前
小羊完成签到,获得积分10
12秒前
12秒前
12秒前
郝宇发布了新的文献求助10
12秒前
科目三应助yibo采纳,获得30
13秒前
复杂的蛋挞完成签到 ,获得积分10
13秒前
14秒前
15秒前
啊哈哈哈哈哈完成签到 ,获得积分10
15秒前
15秒前
JamesPei应助花花采纳,获得10
15秒前
充电宝应助光亮的绮晴采纳,获得10
16秒前
sooyaaa完成签到,获得积分10
17秒前
杨仲文发布了新的文献求助10
17秒前
Silone发布了新的文献求助10
17秒前
深情安青应助老实的玉米采纳,获得10
17秒前
凡凡的凡凡应助Kate采纳,获得10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590