清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm

光伏系统 算法 人口 计算机科学 数学优化 数学 工程类 电气工程 社会学 人口学
作者
Adam Słowik,Krzysztof Cpałka,Yu Xue,Aneta Hapka
出处
期刊:Applied Energy [Elsevier BV]
卷期号:364: 123208-123208 被引量:6
标识
DOI:10.1016/j.apenergy.2024.123208
摘要

This article discusses the problem of accurate and efficient modeling of photovoltaic (PV) panels. It is a highly nonlinear problem. The following models were considered: a single diode model, a double diode model, a triple diode model, a four diode model, a module model (a poly-crystalline Photowatt-PWP201 module and a mono-crystalline STM6-40/36 module). The article presents a mathematical notation of these models, a detailed interpretation of their individual components, and a comparison of obtained results. To increase the effectiveness of modeling, a new population-based algorithm which can handle complex objective functions and a large number of decision variables was developed. This is important for the problem of identifying the parameters of PV cell models because each evaluation of the objective function requires calculating a set of points that determine the current–voltage characteristics. Moreover, in the considered problem a solution is searched with the use of the trial and error method. The proposed algorithm is called Micro Adaptive Fuzzy Cuckoo Search Optimization (μAFCSO). The μAFCSO algorithm uses several new mechanisms that were developed based on our experience with population-based algorithms. The use of these mechanisms has produced very good results in simulations. In the scope of simulation studies, the μAFCSO algorithm was used for parameter extraction in six PV cell models and was also applied to optimize fifteen typical test functions. The test functions were considered in order to demonstrate that our algorithm can be used to solve typical problems processed using population-based algorithms. The results obtained in this study were compared with the results obtained using well-established algorithms. The results obtained in this work are better or comparable to them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
幸福大白发布了新的文献求助10
8秒前
咯咯咯完成签到 ,获得积分10
17秒前
绵羊座鸭梨完成签到 ,获得积分10
18秒前
clock完成签到 ,获得积分10
19秒前
丢硬币的小孩完成签到,获得积分10
23秒前
doctorbin完成签到 ,获得积分0
54秒前
JJ完成签到 ,获得积分0
57秒前
aiyawy完成签到 ,获得积分10
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
1分钟前
幸福大白发布了新的文献求助10
1分钟前
HCCha完成签到,获得积分10
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
huanghe完成签到,获得积分10
1分钟前
1分钟前
唠叨的天亦完成签到 ,获得积分10
1分钟前
幸福大白发布了新的文献求助10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
2分钟前
2分钟前
幸福大白发布了新的文献求助10
2分钟前
蝎子莱莱xth完成签到,获得积分10
2分钟前
t铁核桃1985完成签到 ,获得积分10
2分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
2分钟前
Square完成签到,获得积分10
2分钟前
2分钟前
幸福大白发布了新的文献求助10
3分钟前
Alex-Song完成签到 ,获得积分0
3分钟前
秋夜临完成签到,获得积分0
3分钟前
zyjsunye完成签到 ,获得积分10
3分钟前
Tong完成签到,获得积分0
3分钟前
勤劳的颤完成签到 ,获得积分10
3分钟前
nano完成签到 ,获得积分10
3分钟前
一颗红葡萄完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
幸福大白发布了新的文献求助10
4分钟前
幸福大白发布了新的文献求助10
4分钟前
恒牙完成签到 ,获得积分10
4分钟前
anhuiwsy完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569734
求助须知:如何正确求助?哪些是违规求助? 3991691
关于积分的说明 12356140
捐赠科研通 3664138
什么是DOI,文献DOI怎么找? 2019271
邀请新用户注册赠送积分活动 1053742
科研通“疑难数据库(出版商)”最低求助积分说明 941287