An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm

光伏系统 算法 人口 计算机科学 数学优化 数学 工程类 人口学 社会学 电气工程
作者
Adam Słowik,Krzysztof Cpałka,Yu Xue,Aneta Hapka
出处
期刊:Applied Energy [Elsevier BV]
卷期号:364: 123208-123208 被引量:6
标识
DOI:10.1016/j.apenergy.2024.123208
摘要

This article discusses the problem of accurate and efficient modeling of photovoltaic (PV) panels. It is a highly nonlinear problem. The following models were considered: a single diode model, a double diode model, a triple diode model, a four diode model, a module model (a poly-crystalline Photowatt-PWP201 module and a mono-crystalline STM6-40/36 module). The article presents a mathematical notation of these models, a detailed interpretation of their individual components, and a comparison of obtained results. To increase the effectiveness of modeling, a new population-based algorithm which can handle complex objective functions and a large number of decision variables was developed. This is important for the problem of identifying the parameters of PV cell models because each evaluation of the objective function requires calculating a set of points that determine the current–voltage characteristics. Moreover, in the considered problem a solution is searched with the use of the trial and error method. The proposed algorithm is called Micro Adaptive Fuzzy Cuckoo Search Optimization (μAFCSO). The μAFCSO algorithm uses several new mechanisms that were developed based on our experience with population-based algorithms. The use of these mechanisms has produced very good results in simulations. In the scope of simulation studies, the μAFCSO algorithm was used for parameter extraction in six PV cell models and was also applied to optimize fifteen typical test functions. The test functions were considered in order to demonstrate that our algorithm can be used to solve typical problems processed using population-based algorithms. The results obtained in this study were compared with the results obtained using well-established algorithms. The results obtained in this work are better or comparable to them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll发布了新的文献求助10
刚刚
2秒前
rafa完成签到 ,获得积分10
3秒前
Dd18753801528完成签到,获得积分10
4秒前
树树完成签到,获得积分10
5秒前
Meteor636完成签到 ,获得积分10
5秒前
HSA发布了新的文献求助10
6秒前
6秒前
ztt完成签到,获得积分10
6秒前
读者发布了新的文献求助10
8秒前
LIU发布了新的文献求助10
9秒前
英勇的鹤完成签到,获得积分10
9秒前
taozhiqi完成签到 ,获得积分10
9秒前
飞云发布了新的文献求助10
10秒前
阿维发布了新的文献求助10
12秒前
HHHZZZ完成签到,获得积分10
12秒前
ztt发布了新的文献求助10
13秒前
maybe完成签到,获得积分10
14秒前
CipherSage应助wss采纳,获得10
14秒前
深情的幼南完成签到,获得积分10
15秒前
七米日光完成签到 ,获得积分10
17秒前
安静问梅完成签到,获得积分10
19秒前
汤浩宏发布了新的文献求助10
20秒前
FashionBoy应助危机的巧凡采纳,获得10
21秒前
22秒前
24秒前
26秒前
fjmelite完成签到 ,获得积分10
26秒前
orixero应助LIU采纳,获得10
27秒前
nanaki发布了新的文献求助10
28秒前
香蕉觅云应助你好采纳,获得10
28秒前
29秒前
yuchangkun发布了新的文献求助10
29秒前
30秒前
bzc完成签到,获得积分10
30秒前
读者发布了新的文献求助10
31秒前
33秒前
34秒前
34秒前
漂亮孤兰完成签到 ,获得积分10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997769
求助须知:如何正确求助?哪些是违规求助? 3537294
关于积分的说明 11271231
捐赠科研通 3276455
什么是DOI,文献DOI怎么找? 1807040
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982