亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm

光伏系统 算法 人口 计算机科学 数学优化 数学 工程类 电气工程 社会学 人口学
作者
Adam Słowik,Krzysztof Cpałka,Yu Xue,Aneta Hapka
出处
期刊:Applied Energy [Elsevier]
卷期号:364: 123208-123208
标识
DOI:10.1016/j.apenergy.2024.123208
摘要

This article discusses the problem of accurate and efficient modeling of photovoltaic (PV) panels. It is a highly nonlinear problem. The following models were considered: a single diode model, a double diode model, a triple diode model, a four diode model, a module model (a poly-crystalline Photowatt-PWP201 module and a mono-crystalline STM6-40/36 module). The article presents a mathematical notation of these models, a detailed interpretation of their individual components, and a comparison of obtained results. To increase the effectiveness of modeling, a new population-based algorithm which can handle complex objective functions and a large number of decision variables was developed. This is important for the problem of identifying the parameters of PV cell models because each evaluation of the objective function requires calculating a set of points that determine the current–voltage characteristics. Moreover, in the considered problem a solution is searched with the use of the trial and error method. The proposed algorithm is called Micro Adaptive Fuzzy Cuckoo Search Optimization (μAFCSO). The μAFCSO algorithm uses several new mechanisms that were developed based on our experience with population-based algorithms. The use of these mechanisms has produced very good results in simulations. In the scope of simulation studies, the μAFCSO algorithm was used for parameter extraction in six PV cell models and was also applied to optimize fifteen typical test functions. The test functions were considered in order to demonstrate that our algorithm can be used to solve typical problems processed using population-based algorithms. The results obtained in this study were compared with the results obtained using well-established algorithms. The results obtained in this work are better or comparable to them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
奋斗的杰发布了新的文献求助10
24秒前
krajicek完成签到,获得积分10
32秒前
57秒前
TYJ10002发布了新的文献求助10
1分钟前
1分钟前
chiyudoubao发布了新的文献求助10
1分钟前
阳阳阳完成签到 ,获得积分10
2分钟前
2分钟前
搞钱发布了新的文献求助10
2分钟前
2分钟前
搞钱完成签到,获得积分10
2分钟前
lisasaguan完成签到,获得积分10
2分钟前
RED发布了新的文献求助10
2分钟前
2分钟前
634301059发布了新的文献求助20
2分钟前
2分钟前
yaoyao发布了新的文献求助10
3分钟前
乐乐应助yaoyao采纳,获得10
3分钟前
ktw完成签到,获得积分10
3分钟前
hahahan完成签到 ,获得积分10
4分钟前
跳跃的谷雪完成签到 ,获得积分10
4分钟前
9527z完成签到,获得积分10
5分钟前
LouieHuang完成签到,获得积分10
5分钟前
招水若离完成签到,获得积分10
6分钟前
可爱的函函应助奋斗的杰采纳,获得10
6分钟前
lkk183完成签到 ,获得积分10
6分钟前
7分钟前
yaoyao发布了新的文献求助10
7分钟前
8分钟前
奋斗的杰发布了新的文献求助10
8分钟前
科研通AI2S应助奋斗的杰采纳,获得10
8分钟前
CC完成签到 ,获得积分10
9分钟前
9分钟前
Nancy0818完成签到 ,获得积分10
9分钟前
不去明知山完成签到 ,获得积分10
10分钟前
kitty完成签到,获得积分10
10分钟前
feiCheung完成签到 ,获得积分10
10分钟前
矮小的觅云完成签到 ,获得积分10
10分钟前
红油曲奇完成签到,获得积分10
11分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899707
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316528
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142