Residual neural network with spatiotemporal attention integrated with temporal self-attention based on long short-term memory network for air pollutant concentration prediction

残余物 人工神经网络 期限(时间) 环境科学 空气污染物 污染物 短时记忆 气象学 人工智能 计算机科学 空气污染 循环神经网络 化学 地理 算法 物理 有机化学 量子力学
作者
Dong Li,Jian Wang,Dongwei Tian,Cai Chen,Xingxing Xiao,Lei Wang,Wen Zheng,Meizi Yang,Guojian Zou
出处
期刊:Atmospheric Environment [Elsevier BV]
卷期号:: 120531-120531
标识
DOI:10.1016/j.atmosenv.2024.120531
摘要

Accurate prediction of air pollutant concentrations can be effective in controlling and preventing air pollution, which is crucial for both the government's policy response and the public's reasonable ability to avoid air pollution. In this study, we propose a model based on the principle of big data correlation and deep learning techniques for predicting the concentration of air pollutant concentrations. The proposed model, named STARes-SaLSTM, consists of a residual neural network with spatiotemporal attention (STAResNet) and a temporal self-attention based on long short-term memory network (SaLSTM). The spatiotemporal attention module in STAResNet enhances the original input information by weighting it in both spatial and temporal dimensions, meanwhile the features of the spatial distribution of pollutant and meteorological information across many cities are deeply extracted using ResNet. A novel self-attention method known as temporal self-attention is developed to extract the temporal dependency of air pollutants. LSTM is used as a sequence encoder in this temporal attention method to calculate queries, keys, and values to acquire a more comprehensive temporal dependence than is possible with normal self-attention. The STARes-SaLSTM model successfully predicts air pollution concentrations in the target city for the future by extracting spatiotemporal correlation of feature sequence. In comparison to previous neural network models and conventional methods, the model increases the accuracy of pollutant concentration prediction. The suggested prediction model works well for the one to three hours prediction job, with a root mean square error (RMSE) ranging from 6.716 to 11.648. Furthermore, even for the 1 to 24 hours prediction assignment, we executed multi-scale prediction in the target city and obtained a reasonable performance, with an average RMSE value of 20.576.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
X欣发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
华仔应助飞云采纳,获得10
1秒前
1秒前
1秒前
1秒前
wjx发布了新的文献求助10
2秒前
2秒前
2秒前
Tina发布了新的文献求助10
2秒前
李端完成签到,获得积分10
2秒前
霸气纹发布了新的文献求助10
3秒前
哈哈哈哈发布了新的文献求助10
4秒前
5秒前
Goodluck发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
动听幻儿完成签到,获得积分10
5秒前
5秒前
义气凝阳发布了新的文献求助10
5秒前
6秒前
6秒前
MM发布了新的文献求助10
6秒前
liuyac发布了新的文献求助10
6秒前
6秒前
7秒前
wad1314完成签到,获得积分10
7秒前
waye131完成签到,获得积分10
7秒前
bkagyin应助唐新惠采纳,获得10
8秒前
123完成签到,获得积分20
9秒前
9秒前
欢喜的从彤完成签到,获得积分10
9秒前
10秒前
开心尔芙发布了新的文献求助10
11秒前
英俊的筝发布了新的文献求助10
11秒前
123发布了新的文献求助10
12秒前
cqq完成签到,获得积分10
12秒前
留白完成签到 ,获得积分10
14秒前
完美世界应助复杂的溪流采纳,获得10
15秒前
Ricardo完成签到,获得积分10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974943
求助须知:如何正确求助?哪些是违规求助? 3519467
关于积分的说明 11198482
捐赠科研通 3255728
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877261
科研通“疑难数据库(出版商)”最低求助积分说明 806224