Residual neural network with spatiotemporal attention integrated with temporal self-attention based on long short-term memory network for air pollutant concentration prediction

残余物 人工神经网络 期限(时间) 环境科学 空气污染物 污染物 短时记忆 气象学 人工智能 计算机科学 空气污染 循环神经网络 化学 地理 算法 量子力学 物理 有机化学
作者
Dong Li,Jian Wang,Dongwei Tian,Cai Chen,Xingxing Xiao,Lei Wang,Wen Zheng,Meizi Yang,Guojian Zou
出处
期刊:Atmospheric Environment [Elsevier BV]
卷期号:: 120531-120531
标识
DOI:10.1016/j.atmosenv.2024.120531
摘要

Accurate prediction of air pollutant concentrations can be effective in controlling and preventing air pollution, which is crucial for both the government's policy response and the public's reasonable ability to avoid air pollution. In this study, we propose a model based on the principle of big data correlation and deep learning techniques for predicting the concentration of air pollutant concentrations. The proposed model, named STARes-SaLSTM, consists of a residual neural network with spatiotemporal attention (STAResNet) and a temporal self-attention based on long short-term memory network (SaLSTM). The spatiotemporal attention module in STAResNet enhances the original input information by weighting it in both spatial and temporal dimensions, meanwhile the features of the spatial distribution of pollutant and meteorological information across many cities are deeply extracted using ResNet. A novel self-attention method known as temporal self-attention is developed to extract the temporal dependency of air pollutants. LSTM is used as a sequence encoder in this temporal attention method to calculate queries, keys, and values to acquire a more comprehensive temporal dependence than is possible with normal self-attention. The STARes-SaLSTM model successfully predicts air pollution concentrations in the target city for the future by extracting spatiotemporal correlation of feature sequence. In comparison to previous neural network models and conventional methods, the model increases the accuracy of pollutant concentration prediction. The suggested prediction model works well for the one to three hours prediction job, with a root mean square error (RMSE) ranging from 6.716 to 11.648. Furthermore, even for the 1 to 24 hours prediction assignment, we executed multi-scale prediction in the target city and obtained a reasonable performance, with an average RMSE value of 20.576.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
1秒前
2秒前
九湖夷上完成签到 ,获得积分10
2秒前
噼里啪啦完成签到 ,获得积分10
3秒前
大个应助hahaha123213123采纳,获得30
3秒前
3秒前
惊天大幂幂完成签到,获得积分10
3秒前
英姑应助Fang Xianxin采纳,获得10
4秒前
宋老师发布了新的文献求助30
4秒前
王洋完成签到,获得积分10
5秒前
lw777完成签到,获得积分20
5秒前
慢慢完成签到,获得积分10
5秒前
6秒前
靖123456发布了新的文献求助10
6秒前
拓跋箴完成签到,获得积分10
6秒前
彭于晏应助zy采纳,获得10
7秒前
精明玲完成签到 ,获得积分10
8秒前
8秒前
乐乐完成签到,获得积分10
9秒前
VirSnorlax完成签到,获得积分10
9秒前
SciGPT应助LL采纳,获得10
9秒前
妖孽宇发布了新的文献求助10
10秒前
aa完成签到,获得积分20
10秒前
aaaa完成签到,获得积分10
10秒前
马香芦完成签到,获得积分10
11秒前
西红柿完成签到,获得积分10
12秒前
13秒前
懵懂的冬灵完成签到,获得积分10
13秒前
碧蓝可仁完成签到 ,获得积分10
14秒前
王拉拉完成签到 ,获得积分10
14秒前
西西完成签到,获得积分10
14秒前
深情安青应助mkmimii采纳,获得10
15秒前
上官若男应助小王采纳,获得10
15秒前
bkagyin应助旦皋采纳,获得10
15秒前
Orange应助欣欣采纳,获得10
16秒前
玄学大哥完成签到,获得积分10
16秒前
16秒前
16秒前
kk完成签到,获得积分10
16秒前
ww007完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029