已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LAACNet: Lightweight adaptive activation convolution network-based defect detection on polished metal surfaces

计算机科学 卷积(计算机科学) 人工智能 人工神经网络
作者
Zhongliang Lv,Zhenyu Lu,Kewen Xia,Hailun Zuo,Xiangyu Jia,Honglian Li,Youwei Xu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108482-108482 被引量:4
标识
DOI:10.1016/j.engappai.2024.108482
摘要

After the metal workpiece has been polished, there may still be small defects on the surface, which will adversely affect the quality of the product and the service life and availability of the metal in severe cases. To solve this problem, the industrial sector has been seeking more lightweight and efficient solutions. Therefore, this thesis proposes a Lightweight Adaptive Activation Convolution Network (LAACNet). Firstly, this thesis proposes a lightweight convolution module that adopts features concatenation to realize intra-channel and inter-channel information transfer and fusion. Secondly, this thesis proposes an adaptive activation convolution module with the enhanced nonlinear expression of the module, which makes the deep neural network expression more powerful. This thesis proposes a spatial channel coordinate attention module to capture the long-range dependencies between image pixels better. Finally, this thesis introduces a loss function that can optimize performance in target classification and localization tasks. Experiments were conducted on the self-made datasets Metal Surface Defect-Detection (MSD-DET) and GC10-Detection (GC10-DET), achieving Mean Average Precision 50 (mAP50) of 86.3% and 66.8%, respectively. The detection performance of this model is superior to other methods. In the ablation experiment, this thesis verified the effectiveness of each module. This thesis validated the Northeastern University-Detection (NEU-DET) dataset, achieving a mAP50 of 76.0%. The results show that LAACNet exhibits excellent robustness and generalization performance in surface defect detection. In addition, the method significantly reduces the number of model parameters, providing an effective choice for lightweight and efficient solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
医学僧发布了新的文献求助10
2秒前
samuel发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助黄垚采纳,获得10
6秒前
8秒前
张城豪发布了新的文献求助30
11秒前
yyt完成签到,获得积分10
12秒前
yyt发布了新的文献求助10
15秒前
zjspidany发布了新的文献求助50
17秒前
17秒前
柏代桃发布了新的文献求助10
18秒前
18秒前
自信的乐松完成签到,获得积分10
18秒前
小蘑菇应助南笙采纳,获得10
20秒前
共享精神应助斯巴达采纳,获得10
20秒前
chenx02发布了新的文献求助10
22秒前
24秒前
NexusExplorer应助衰神采纳,获得10
25秒前
科研通AI2S应助zhuzhu采纳,获得10
25秒前
超锅发布了新的文献求助10
25秒前
yanna应助科研通管家采纳,获得20
26秒前
竹筏过海应助科研通管家采纳,获得30
26秒前
所所应助科研通管家采纳,获得10
26秒前
yanna应助科研通管家采纳,获得20
26秒前
竹筏过海应助科研通管家采纳,获得30
26秒前
竹筏过海应助科研通管家采纳,获得30
26秒前
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
28秒前
桐桐应助柏代桃采纳,获得10
35秒前
科目三应助徐瑶瑶采纳,获得10
37秒前
英姑应助忧虑的羊采纳,获得10
40秒前
40秒前
41秒前
43秒前
huahua发布了新的文献求助10
43秒前
糊涂的剑完成签到,获得积分10
43秒前
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307151
求助须知:如何正确求助?哪些是违规求助? 2940937
关于积分的说明 8499575
捐赠科研通 2615129
什么是DOI,文献DOI怎么找? 1428685
科研通“疑难数据库(出版商)”最低求助积分说明 663493
邀请新用户注册赠送积分活动 648355