Instrument-tissue Interaction Detection Framework for Surgical Video Understanding

计算机科学 代码段 最小边界框 帧(网络) 跳跃式监视 背景(考古学) 特征(语言学) 人工智能 班级(哲学) 计算机视觉 利用 人机交互 任务(项目管理) 特征提取 情报检索 图像(数学) 电信 古生物学 语言学 哲学 计算机安全 管理 生物 经济
作者
Wenjun Lin,Yan Hu,Huazhu Fu,Mingming Yang,Chin-Boon Chng,Ryo Kawasaki,Chee‐Kong Chui,Jiang Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2803-2813
标识
DOI:10.1109/tmi.2024.3381209
摘要

Instrument-tissue interaction detection task, which helps understand surgical activities, is vital for constructing computer-assisted surgery systems but with many challenges. Firstly, most models represent instrument-tissue interaction in a coarse-grained way which only focuses on classification and lacks the ability to automatically detect instruments and tissues. Secondly, existing works do not fully consider relations between intra-and inter-frame of instruments and tissues. In the paper, we propose to represent instrument-tissue interaction as ⟨instrument class, instrument bounding box, tissue class, tissue bounding box, action class⟩ quintuple and present an Instrument-Tissue Interaction Detection Network (ITIDNet) to detect the quintuple for surgery videos understanding. Specifically, we propose a Snippet Consecutive Feature (SCF) Layer to enhance features by modeling relationships of proposals in the current frame using global context information in the video snippet. We also propose a Spatial Corresponding Attention (SCA) Layer to incorporate features of proposals between adjacent frames through spatial encoding. To reason relationships between instruments and tissues, a Temporal Graph (TG) Layer is proposed with intra-frame connections to exploit relationships between instruments and tissues in the same frame and inter-frame connections to model the temporal information for the same instance. For evaluation, we build a cataract surgery video (PhacoQ) dataset and a cholecystectomy surgery video (CholecQ) dataset. Experimental results demonstrate the promising performance of our model, which outperforms other state-of-the-art models on both datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鸭嗦饼干发布了新的文献求助10
1秒前
zzh发布了新的文献求助10
1秒前
1秒前
后来发布了新的文献求助10
1秒前
mtfx发布了新的文献求助10
2秒前
尊敬柚子发布了新的文献求助10
3秒前
小康子完成签到,获得积分10
3秒前
汉堡包应助fanjinzhu采纳,获得10
4秒前
4秒前
CodeCraft应助鸭嗦饼干采纳,获得10
4秒前
莫星晨完成签到,获得积分20
5秒前
852应助一颗西柚采纳,获得10
5秒前
zyq发布了新的文献求助10
5秒前
CC应助汪汪队立大功采纳,获得10
5秒前
6秒前
星夜发布了新的文献求助10
7秒前
打打应助比巴卜采纳,获得10
7秒前
7秒前
黄小渣发布了新的文献求助10
8秒前
8秒前
8秒前
慕青应助能干的茗采纳,获得10
10秒前
ghost完成签到,获得积分10
10秒前
10秒前
粗暴的荔枝完成签到,获得积分10
10秒前
大个应助yzxzdm采纳,获得10
11秒前
鸭嗦饼干完成签到,获得积分20
11秒前
杨江华关注了科研通微信公众号
11秒前
哈哈哈发布了新的文献求助10
12秒前
13秒前
852应助顾化蛹采纳,获得10
13秒前
来日可追应助辰月贰拾采纳,获得10
13秒前
13秒前
14秒前
华仔应助后来采纳,获得10
14秒前
15秒前
lxh发布了新的文献求助10
15秒前
16秒前
Nnn完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560897
求助须知:如何正确求助?哪些是违规求助? 3134711
关于积分的说明 9409189
捐赠科研通 2834950
什么是DOI,文献DOI怎么找? 1558310
邀请新用户注册赠送积分活动 728082
科研通“疑难数据库(出版商)”最低求助积分说明 716686