CT respiratory motion synthesis using joint supervised and adversarial learning

人工智能 计算机科学 相似性(几何) 图像配准 计算机视觉 放射治疗计划 平滑度 深度学习 影像引导放射治疗 放射治疗 模式识别(心理学) 算法 医学影像学 图像(数学) 数学 放射科 医学 数学分析
作者
Yong Cao,Vincent Bourbonne,François Lucia,Ulrike Schick,Julien Bert,Vincent Jaouen,Dimitris Visvikis
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (9): 095001-095001
标识
DOI:10.1088/1361-6560/ad388a
摘要

Objective.Four-dimensional computed tomography (4DCT) imaging consists in reconstructing a CT acquisition into multiple phases to track internal organ and tumor motion. It is commonly used in radiotherapy treatment planning to establish planning target volumes. However, 4DCT increases protocol complexity, may not align with patient breathing during treatment, and lead to higher radiation delivery.Approach.In this study, we propose a deep synthesis method to generate pseudo respiratory CT phases from static images for motion-aware treatment planning. The model produces patient-specific deformation vector fields (DVFs) by conditioning synthesis on external patient surface-based estimation, mimicking respiratory monitoring devices. A key methodological contribution is to encourage DVF realism through supervised DVF training while using an adversarial term jointly not only on the warped image but also on the magnitude of the DVF itself. This way, we avoid excessive smoothness typically obtained through deep unsupervised learning, and encourage correlations with the respiratory amplitude.Main results.Performance is evaluated using real 4DCT acquisitions with smaller tumor volumes than previously reported. Results demonstrate for the first time that the generated pseudo-respiratory CT phases can capture organ and tumor motion with similar accuracy to repeated 4DCT scans of the same patient. Mean inter-scans tumor center-of-mass distances and Dice similarity coefficients were 1.97 mm and 0.63, respectively, for real 4DCT phases and 2.35 mm and 0.71 for synthetic phases, and compares favorably to a state-of-the-art technique (RMSim).Significance.This study presents a deep image synthesis method that addresses the limitations of conventional 4DCT by generating pseudo-respiratory CT phases from static images. Although further studies are needed to assess the dosimetric impact of the proposed method, this approach has the potential to reduce radiation exposure in radiotherapy treatment planning while maintaining accurate motion representation. Our training and testing code can be found athttps://github.com/cyiheng/Dynagan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助长孙巧凡采纳,获得10
1秒前
282387287发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
xiaxiao应助OCDer采纳,获得1050
4秒前
4秒前
Duolalala发布了新的文献求助10
4秒前
Ava应助Fung采纳,获得10
5秒前
糊糊发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
Singularity应助77采纳,获得10
7秒前
威武冷雪发布了新的文献求助10
8秒前
所所应助healer采纳,获得10
8秒前
独特大米发布了新的文献求助10
8秒前
zhaliang完成签到,获得积分20
8秒前
完美世界应助寻桃阿玉采纳,获得10
8秒前
9秒前
soccer13发布了新的文献求助10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
勤劳时光完成签到,获得积分10
9秒前
小宏完成签到,获得积分10
9秒前
星辰大海应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得20
10秒前
不配.应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
10秒前
1257应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
gengxiaoyu发布了新的文献求助10
11秒前
11秒前
12秒前
IAMXC发布了新的文献求助10
12秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141929
求助须知:如何正确求助?哪些是违规求助? 2792912
关于积分的说明 7804490
捐赠科研通 2449236
什么是DOI,文献DOI怎么找? 1303108
科研通“疑难数据库(出版商)”最低求助积分说明 626771
版权声明 601291