CT respiratory motion synthesis using joint supervised and adversarial learning

人工智能 计算机科学 相似性(几何) 图像配准 计算机视觉 放射治疗计划 平滑度 深度学习 影像引导放射治疗 放射治疗 模式识别(心理学) 算法 医学影像学 图像(数学) 数学 放射科 医学 数学分析
作者
Yong Cao,Vincent Bourbonne,François Lucia,Ulrike Schick,Julien Bert,Vincent Jaouen,Dimitris Visvikis
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (9): 095001-095001
标识
DOI:10.1088/1361-6560/ad388a
摘要

Objective.Four-dimensional computed tomography (4DCT) imaging consists in reconstructing a CT acquisition into multiple phases to track internal organ and tumor motion. It is commonly used in radiotherapy treatment planning to establish planning target volumes. However, 4DCT increases protocol complexity, may not align with patient breathing during treatment, and lead to higher radiation delivery.Approach.In this study, we propose a deep synthesis method to generate pseudo respiratory CT phases from static images for motion-aware treatment planning. The model produces patient-specific deformation vector fields (DVFs) by conditioning synthesis on external patient surface-based estimation, mimicking respiratory monitoring devices. A key methodological contribution is to encourage DVF realism through supervised DVF training while using an adversarial term jointly not only on the warped image but also on the magnitude of the DVF itself. This way, we avoid excessive smoothness typically obtained through deep unsupervised learning, and encourage correlations with the respiratory amplitude.Main results.Performance is evaluated using real 4DCT acquisitions with smaller tumor volumes than previously reported. Results demonstrate for the first time that the generated pseudo-respiratory CT phases can capture organ and tumor motion with similar accuracy to repeated 4DCT scans of the same patient. Mean inter-scans tumor center-of-mass distances and Dice similarity coefficients were 1.97 mm and 0.63, respectively, for real 4DCT phases and 2.35 mm and 0.71 for synthetic phases, and compares favorably to a state-of-the-art technique (RMSim).Significance.This study presents a deep image synthesis method that addresses the limitations of conventional 4DCT by generating pseudo-respiratory CT phases from static images. Although further studies are needed to assess the dosimetric impact of the proposed method, this approach has the potential to reduce radiation exposure in radiotherapy treatment planning while maintaining accurate motion representation. Our training and testing code can be found athttps://github.com/cyiheng/Dynagan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
香蕉觅云应助形弃影采纳,获得30
2秒前
正直芒果完成签到,获得积分10
3秒前
liudw完成签到,获得积分10
3秒前
3秒前
多情蓝完成签到 ,获得积分10
4秒前
鄂老三完成签到,获得积分10
5秒前
5秒前
快乐的胖子应助依久九九采纳,获得30
5秒前
xx完成签到 ,获得积分10
5秒前
杨榆藤发布了新的文献求助10
6秒前
xy666完成签到,获得积分10
6秒前
科目三应助刘述采纳,获得10
6秒前
6秒前
6秒前
6秒前
敏感的飞松完成签到 ,获得积分10
7秒前
dame完成签到,获得积分20
7秒前
还好发布了新的文献求助30
8秒前
9秒前
liuqiusen发布了新的文献求助50
9秒前
9秒前
共享精神应助自觉的千青采纳,获得10
10秒前
李健应助彩虹糖采纳,获得10
10秒前
10秒前
奶昔发布了新的文献求助10
11秒前
11秒前
烟花应助武雨寒采纳,获得10
11秒前
yk发布了新的文献求助10
11秒前
YunJi发布了新的文献求助10
12秒前
西西完成签到 ,获得积分10
12秒前
12秒前
14秒前
QRE发布了新的文献求助10
15秒前
15秒前
逆天大脚发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316