Development and validation of an ultrasound-based deep learning radiomics nomogram for predicting the malignant risk of ovarian tumours

列线图 接收机工作特性 医学 卵巢癌 逻辑回归 恶性肿瘤 曲线下面积 无线电技术 放射科 肿瘤科 机器学习 计算机科学 内科学 癌症
作者
Yangchun Du,Yanju Xiao,Wenwen Guo,Jinxiu Yao,Tian Lan,Sijin Li,Huoyue Wen,Wenying Zhu,Guangling He,Hongyu Zheng,Hai‐Ning Chen
出处
期刊:Biomedical Engineering Online [BioMed Central]
卷期号:23 (1) 被引量:2
标识
DOI:10.1186/s12938-024-01234-y
摘要

Abstract Background The timely identification and management of ovarian cancer are critical determinants of patient prognosis. In this study, we developed and validated a deep learning radiomics nomogram (DLR_Nomogram) based on ultrasound (US) imaging to accurately predict the malignant risk of ovarian tumours and compared the diagnostic performance of the DLR_Nomogram to that of the ovarian-adnexal reporting and data system (O-RADS). Methods This study encompasses two research tasks. Patients were randomly divided into training and testing sets in an 8:2 ratio for both tasks. In task 1, we assessed the malignancy risk of 849 patients with ovarian tumours. In task 2, we evaluated the malignancy risk of 391 patients with O-RADS 4 and O-RADS 5 ovarian neoplasms. Three models were developed and validated to predict the risk of malignancy in ovarian tumours. The predicted outcomes of the models for each sample were merged to form a new feature set that was utilised as an input for the logistic regression (LR) model for constructing a combined model, visualised as the DLR_Nomogram. Then, the diagnostic performance of these models was evaluated by the receiver operating characteristic curve (ROC). Results The DLR_Nomogram demonstrated superior predictive performance in predicting the malignant risk of ovarian tumours, as evidenced by area under the ROC curve (AUC) values of 0.985 and 0.928 for the training and testing sets of task 1, respectively. The AUC value of its testing set was lower than that of the O-RADS; however, the difference was not statistically significant. The DLR_Nomogram exhibited the highest AUC values of 0.955 and 0.869 in the training and testing sets of task 2, respectively. The DLR_Nomogram showed satisfactory fitting performance for both tasks in Hosmer–Lemeshow testing. Decision curve analysis demonstrated that the DLR_Nomogram yielded greater net clinical benefits for predicting malignant ovarian tumours within a specific range of threshold values. Conclusions The US-based DLR_Nomogram has shown the capability to accurately predict the malignant risk of ovarian tumours, exhibiting a predictive efficacy comparable to that of O-RADS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RRR971028完成签到,获得积分10
1秒前
坦率的怜容完成签到,获得积分10
4秒前
柳七完成签到,获得积分10
4秒前
薄荷味完成签到 ,获得积分10
5秒前
whyme完成签到,获得积分10
8秒前
Yi完成签到,获得积分10
9秒前
淡淡菠萝完成签到 ,获得积分10
10秒前
老天师一巴掌完成签到 ,获得积分10
10秒前
苏格拉底的嘲笑完成签到,获得积分10
10秒前
白枫完成签到 ,获得积分10
11秒前
nininidoc完成签到,获得积分10
13秒前
邓娅琴完成签到 ,获得积分10
13秒前
13秒前
Duan完成签到 ,获得积分10
14秒前
要文献啊完成签到 ,获得积分10
14秒前
芝麻糊应助yeape采纳,获得10
14秒前
Xx完成签到 ,获得积分10
14秒前
等我吃胖完成签到,获得积分10
17秒前
虚幻龙猫完成签到,获得积分10
17秒前
年少丶完成签到,获得积分10
19秒前
蓓蓓完成签到,获得积分10
19秒前
研友_VZG7GZ应助洁净斑马采纳,获得10
20秒前
CY完成签到,获得积分10
21秒前
phil完成签到,获得积分10
22秒前
anhuiwsy完成签到 ,获得积分10
23秒前
yydragen应助入门的橙橙采纳,获得50
26秒前
自信向梦完成签到,获得积分10
28秒前
细腻曼冬完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
phil完成签到,获得积分10
29秒前
31秒前
赵亚南完成签到,获得积分10
34秒前
顾矜应助ATOM采纳,获得10
34秒前
等待小刺猬完成签到,获得积分10
34秒前
kk完成签到,获得积分10
35秒前
fhxwz完成签到,获得积分10
37秒前
洁净斑马发布了新的文献求助10
38秒前
40秒前
地表飞猪应助科研通管家采纳,获得10
40秒前
丘比特应助科研通管家采纳,获得10
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027