Development and validation of an ultrasound-based deep learning radiomics nomogram for predicting the malignant risk of ovarian tumours

列线图 接收机工作特性 医学 卵巢癌 逻辑回归 恶性肿瘤 曲线下面积 无线电技术 放射科 肿瘤科 机器学习 计算机科学 内科学 癌症
作者
Yangchun Du,Yanju Xiao,Wenwen Guo,Jinxiu Yao,Tian Lan,Sijin Li,Huoyue Wen,Wenying Zhu,Guangling He,Hongyu Zheng,Hai‐Ning Chen
出处
期刊:Biomedical Engineering Online [BioMed Central]
卷期号:23 (1) 被引量:2
标识
DOI:10.1186/s12938-024-01234-y
摘要

Abstract Background The timely identification and management of ovarian cancer are critical determinants of patient prognosis. In this study, we developed and validated a deep learning radiomics nomogram (DLR_Nomogram) based on ultrasound (US) imaging to accurately predict the malignant risk of ovarian tumours and compared the diagnostic performance of the DLR_Nomogram to that of the ovarian-adnexal reporting and data system (O-RADS). Methods This study encompasses two research tasks. Patients were randomly divided into training and testing sets in an 8:2 ratio for both tasks. In task 1, we assessed the malignancy risk of 849 patients with ovarian tumours. In task 2, we evaluated the malignancy risk of 391 patients with O-RADS 4 and O-RADS 5 ovarian neoplasms. Three models were developed and validated to predict the risk of malignancy in ovarian tumours. The predicted outcomes of the models for each sample were merged to form a new feature set that was utilised as an input for the logistic regression (LR) model for constructing a combined model, visualised as the DLR_Nomogram. Then, the diagnostic performance of these models was evaluated by the receiver operating characteristic curve (ROC). Results The DLR_Nomogram demonstrated superior predictive performance in predicting the malignant risk of ovarian tumours, as evidenced by area under the ROC curve (AUC) values of 0.985 and 0.928 for the training and testing sets of task 1, respectively. The AUC value of its testing set was lower than that of the O-RADS; however, the difference was not statistically significant. The DLR_Nomogram exhibited the highest AUC values of 0.955 and 0.869 in the training and testing sets of task 2, respectively. The DLR_Nomogram showed satisfactory fitting performance for both tasks in Hosmer–Lemeshow testing. Decision curve analysis demonstrated that the DLR_Nomogram yielded greater net clinical benefits for predicting malignant ovarian tumours within a specific range of threshold values. Conclusions The US-based DLR_Nomogram has shown the capability to accurately predict the malignant risk of ovarian tumours, exhibiting a predictive efficacy comparable to that of O-RADS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lynch发布了新的文献求助10
刚刚
尽舜尧完成签到,获得积分10
刚刚
1秒前
马冬梅完成签到 ,获得积分10
1秒前
liu完成签到,获得积分10
1秒前
yoyo发布了新的文献求助10
1秒前
2025迷完成签到 ,获得积分10
1秒前
明理的亦寒完成签到 ,获得积分10
1秒前
bkagyin应助三金采纳,获得30
1秒前
2秒前
2秒前
3秒前
Leeny发布了新的文献求助10
3秒前
Hello应助zhangzhen采纳,获得10
3秒前
领导范儿应助Nolan采纳,获得10
3秒前
浮游应助小救星采纳,获得10
4秒前
5秒前
靳佩发布了新的文献求助10
6秒前
CipherSage应助ZHAYUE采纳,获得10
7秒前
越啊发布了新的文献求助10
7秒前
111发布了新的文献求助10
9秒前
11秒前
白衣修身完成签到,获得积分10
11秒前
科研通AI5应助yoyo采纳,获得10
12秒前
哈尼酱完成签到,获得积分10
12秒前
13秒前
15秒前
16秒前
16秒前
宓之云完成签到,获得积分10
16秒前
Nolan发布了新的文献求助10
17秒前
17秒前
苗条向珊发布了新的文献求助10
18秒前
18秒前
眼睛大的诗云完成签到 ,获得积分10
20秒前
科研通AI5应助笙箫采纳,获得10
20秒前
20秒前
lio发布了新的文献求助10
21秒前
ZHAYUE发布了新的文献求助10
21秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120563
求助须知:如何正确求助?哪些是违规求助? 4325901
关于积分的说明 13478119
捐赠科研通 4159552
什么是DOI,文献DOI怎么找? 2279551
邀请新用户注册赠送积分活动 1281381
关于科研通互助平台的介绍 1220210