Development and validation of an ultrasound-based deep learning radiomics nomogram for predicting the malignant risk of ovarian tumours

列线图 接收机工作特性 医学 卵巢癌 逻辑回归 恶性肿瘤 曲线下面积 无线电技术 放射科 肿瘤科 机器学习 计算机科学 内科学 癌症
作者
Yangchun Du,Yanju Xiao,Wenwen Guo,Jinxiu Yao,Tian Lan,Sijin Li,Huoyue Wen,Wenying Zhu,Guangling He,Hongyu Zheng,Hai‐Ning Chen
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:23 (1) 被引量:2
标识
DOI:10.1186/s12938-024-01234-y
摘要

Abstract Background The timely identification and management of ovarian cancer are critical determinants of patient prognosis. In this study, we developed and validated a deep learning radiomics nomogram (DLR_Nomogram) based on ultrasound (US) imaging to accurately predict the malignant risk of ovarian tumours and compared the diagnostic performance of the DLR_Nomogram to that of the ovarian-adnexal reporting and data system (O-RADS). Methods This study encompasses two research tasks. Patients were randomly divided into training and testing sets in an 8:2 ratio for both tasks. In task 1, we assessed the malignancy risk of 849 patients with ovarian tumours. In task 2, we evaluated the malignancy risk of 391 patients with O-RADS 4 and O-RADS 5 ovarian neoplasms. Three models were developed and validated to predict the risk of malignancy in ovarian tumours. The predicted outcomes of the models for each sample were merged to form a new feature set that was utilised as an input for the logistic regression (LR) model for constructing a combined model, visualised as the DLR_Nomogram. Then, the diagnostic performance of these models was evaluated by the receiver operating characteristic curve (ROC). Results The DLR_Nomogram demonstrated superior predictive performance in predicting the malignant risk of ovarian tumours, as evidenced by area under the ROC curve (AUC) values of 0.985 and 0.928 for the training and testing sets of task 1, respectively. The AUC value of its testing set was lower than that of the O-RADS; however, the difference was not statistically significant. The DLR_Nomogram exhibited the highest AUC values of 0.955 and 0.869 in the training and testing sets of task 2, respectively. The DLR_Nomogram showed satisfactory fitting performance for both tasks in Hosmer–Lemeshow testing. Decision curve analysis demonstrated that the DLR_Nomogram yielded greater net clinical benefits for predicting malignant ovarian tumours within a specific range of threshold values. Conclusions The US-based DLR_Nomogram has shown the capability to accurately predict the malignant risk of ovarian tumours, exhibiting a predictive efficacy comparable to that of O-RADS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jiang发布了新的文献求助10
1秒前
活泼乐瑶发布了新的文献求助10
1秒前
2秒前
2秒前
月亮煮粥完成签到,获得积分10
2秒前
斯文败类应助浪里小白龙采纳,获得10
4秒前
IAN发布了新的文献求助10
5秒前
852应助獭兔采纳,获得40
5秒前
6秒前
7秒前
曹杨磊发布了新的文献求助10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
VDC应助科研通管家采纳,获得30
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
VDC应助科研通管家采纳,获得30
8秒前
无极微光应助科研通管家采纳,获得50
8秒前
爱学习的毛完成签到,获得积分10
8秒前
VDC应助科研通管家采纳,获得30
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
xxl1031237415完成签到,获得积分10
9秒前
兴奋的铸海完成签到,获得积分10
10秒前
Tiansy发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
Hello应助顺顺顺采纳,获得10
14秒前
alpha发布了新的文献求助10
15秒前
深情安青应助焜少采纳,获得10
15秒前
小胡发布了新的文献求助10
15秒前
小风关注了科研通微信公众号
15秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578482
求助须知:如何正确求助?哪些是违规求助? 4663316
关于积分的说明 14745953
捐赠科研通 4604100
什么是DOI,文献DOI怎么找? 2526837
邀请新用户注册赠送积分活动 1496440
关于科研通互助平台的介绍 1465718