Development and validation of an ultrasound-based deep learning radiomics nomogram for predicting the malignant risk of ovarian tumours

列线图 接收机工作特性 医学 卵巢癌 逻辑回归 恶性肿瘤 曲线下面积 无线电技术 放射科 肿瘤科 机器学习 计算机科学 内科学 癌症
作者
Yangchun Du,Yanju Xiao,Wenwen Guo,Jinxiu Yao,Tian Lan,Sijin Li,Huoyue Wen,Wenying Zhu,Guangling He,Hongyu Zheng,Hai‐Ning Chen
出处
期刊:Biomedical Engineering Online [Springer Nature]
卷期号:23 (1) 被引量:2
标识
DOI:10.1186/s12938-024-01234-y
摘要

Abstract Background The timely identification and management of ovarian cancer are critical determinants of patient prognosis. In this study, we developed and validated a deep learning radiomics nomogram (DLR_Nomogram) based on ultrasound (US) imaging to accurately predict the malignant risk of ovarian tumours and compared the diagnostic performance of the DLR_Nomogram to that of the ovarian-adnexal reporting and data system (O-RADS). Methods This study encompasses two research tasks. Patients were randomly divided into training and testing sets in an 8:2 ratio for both tasks. In task 1, we assessed the malignancy risk of 849 patients with ovarian tumours. In task 2, we evaluated the malignancy risk of 391 patients with O-RADS 4 and O-RADS 5 ovarian neoplasms. Three models were developed and validated to predict the risk of malignancy in ovarian tumours. The predicted outcomes of the models for each sample were merged to form a new feature set that was utilised as an input for the logistic regression (LR) model for constructing a combined model, visualised as the DLR_Nomogram. Then, the diagnostic performance of these models was evaluated by the receiver operating characteristic curve (ROC). Results The DLR_Nomogram demonstrated superior predictive performance in predicting the malignant risk of ovarian tumours, as evidenced by area under the ROC curve (AUC) values of 0.985 and 0.928 for the training and testing sets of task 1, respectively. The AUC value of its testing set was lower than that of the O-RADS; however, the difference was not statistically significant. The DLR_Nomogram exhibited the highest AUC values of 0.955 and 0.869 in the training and testing sets of task 2, respectively. The DLR_Nomogram showed satisfactory fitting performance for both tasks in Hosmer–Lemeshow testing. Decision curve analysis demonstrated that the DLR_Nomogram yielded greater net clinical benefits for predicting malignant ovarian tumours within a specific range of threshold values. Conclusions The US-based DLR_Nomogram has shown the capability to accurately predict the malignant risk of ovarian tumours, exhibiting a predictive efficacy comparable to that of O-RADS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气翠霜完成签到,获得积分10
刚刚
积极孤菱完成签到,获得积分10
1秒前
虚心的芹菜完成签到,获得积分10
1秒前
lllllll完成签到,获得积分10
1秒前
洛洛发布了新的文献求助20
1秒前
dd36完成签到,获得积分10
1秒前
lanxinyue应助爹爹采纳,获得10
1秒前
ghostR完成签到,获得积分10
1秒前
这玩意长头发啦完成签到,获得积分10
1秒前
luka发布了新的文献求助10
1秒前
1秒前
ytzhang0587完成签到,获得积分10
2秒前
Majician完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
summer发布了新的文献求助10
3秒前
4秒前
豆子发布了新的文献求助10
4秒前
允胖胖完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
作文27分完成签到,获得积分10
7秒前
张小小完成签到,获得积分10
8秒前
Hsyin关注了科研通微信公众号
8秒前
高大大雁发布了新的文献求助10
8秒前
lwbgm完成签到,获得积分10
8秒前
高贵花瓣应助几又采纳,获得10
9秒前
闪闪采梦发布了新的文献求助10
9秒前
wait发布了新的文献求助30
9秒前
10335发布了新的文献求助10
9秒前
小木完成签到,获得积分10
9秒前
9秒前
10秒前
于瑜与余发布了新的文献求助10
10秒前
kk完成签到,获得积分10
10秒前
Hysen_L完成签到,获得积分10
11秒前
YuuLoon应助XiYang采纳,获得10
11秒前
qidada发布了新的文献求助10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151290
求助须知:如何正确求助?哪些是违规求助? 2802726
关于积分的说明 7850119
捐赠科研通 2460164
什么是DOI,文献DOI怎么找? 1309586
科研通“疑难数据库(出版商)”最低求助积分说明 628975
版权声明 601760