RIO-Vehicle: A Tightly-Coupled Vehicle Dynamics Extension of 4D Radar Inertial Odometry

里程计 惯性参考系 扩展(谓词逻辑) 雷达 双基地雷达 计算机科学 动力学(音乐) 遥感 雷达成像 人工智能 物理 地质学 声学 移动机器人 机器人 电信 经典力学 程序设计语言
作者
Jiaqi Zhu,Guirong Zhuo,Lu Xiong,he zihang,Bo Leng
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2847
摘要

<div class="section abstract"><div class="htmlview paragraph">Accurate and reliable localization in GNSS-denied environments is critical for autonomous driving. Nevertheless, LiDAR-based and camera-based methods are easily affected by adverse weather conditions such as rain, snow, and fog. The 4D Radar with all-weather performance and high resolution has attracted more interest. Currently, there are few localization algorithms based on 4D Radar, so there is an urgent need to develop reliable and accurate positioning solutions. This paper introduces RIO-Vehicle, a novel tightly coupled 4D Radar/IMU/vehicle dynamics within the factor graph framework. RIO-Vehicle aims to achieve reliable and accurate vehicle state estimation, encompassing position, velocity, and attitude. To enhance the accuracy of relative constraints, we introduce a new integrated IMU/Dynamics pre-integration model that combines a 2D vehicle dynamics model with a 3D kinematics model. Then, we employ a dynamic object removal process to filter out dynamic points from a single 4D Radar scan and perform scan-to-scan matching to obtain 4D Radar odometry. Furthermore, we introduce ground plane constraints to eliminate vertical error drift. In the backend, we add the IMU/Dynamics factor, ground plane factor, and 4D Radar odometry factor to the factor graph and obtain estimation results through sliding window-based optimization. Real-vehicle experiments confirm the reliability and accuracy of our proposed method.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
蓝天发布了新的文献求助10
6秒前
6秒前
单纯乞完成签到,获得积分10
7秒前
海盐咸喵发布了新的文献求助10
8秒前
8秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
yqd666777完成签到,获得积分10
13秒前
13秒前
15秒前
17秒前
orixero应助科研通管家采纳,获得10
17秒前
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
苹果梦蕊完成签到,获得积分10
17秒前
一页墨城完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736993
求助须知:如何正确求助?哪些是违规求助? 5369908
关于积分的说明 15334507
捐赠科研通 4880710
什么是DOI,文献DOI怎么找? 2622987
邀请新用户注册赠送积分活动 1571843
关于科研通互助平台的介绍 1528696