多硫化物
电解质
电导率
材料科学
锂(药物)
复合数
化学工程
快离子导体
离子
离子运输机
纳米技术
无机化学
化学
电极
复合材料
有机化学
物理化学
工程类
医学
内分泌学
作者
J. G. Li,Fangxi Xie,Weiwei Pang,Qingyou Liang,Xianfeng Yang,Lei Zhang
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2024-03-13
卷期号:10 (11)
被引量:14
标识
DOI:10.1126/sciadv.adl3925
摘要
A dilemma arises when striving to balance the maximum desired ion conductivity and minimize the undesired lithium polysulfide shuttling effect for all–solid-state lithium-sulfur batteries (ASSLSBs). Here, we introduce a strategy of using ordered MIL-125–NH 2 as fillers for poly(ethylene oxide)–based electrolytes to simultaneously regulate the transportation of lithium ions and polysulfides. When compared to electrolytes lacking metal-organic frameworks (MOFs) and those containing disordered MOFs, the electrolyte featuring an ordered-MOF structure, denoted as three-dimensional (3D) MPPL composite solid electrolyte (CSE), exhibits the highest ion conductivity of 8.3 × 10 −4 siemens per centimeter at 60°C. As a result, pouch-type ASSLSBs with 3D MPPL CSE maintains stable cycling for 400 cycles at 0.5 C at 60°C, showcasing the successful implementation of this strategy in simultaneously regulating ion and polysulfide transport. This approach opens up alternative avenues to achieve high-performance ASSLSBs with exceptional energy density.
科研通智能强力驱动
Strongly Powered by AbleSci AI