A Physics-Based Model-Data-Driven Method for Spindle Health Diagnosis—Part III: Model Training and Fault Detection

培训(气象学) 断层(地质) 计算机科学 故障检测与隔离 人工智能 物理 地质学 地震学 气象学 执行机构
作者
Chung-Yu Tai,Yusuf Altintaş
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:146 (8) 被引量:1
标识
DOI:10.1115/1.4065227
摘要

Abstract The primary goal of the paper is to monitor the health of the spindle in machine tools to ensure optimal performance and reduce costly downtimes. Spindle health monitoring is essential to detect wear and cracks in spindle bearings, which can be challenging due to their gradual development and hidden locations. The proposed approach combines physics-based modeling and data-driven techniques to monitor spindle health effectively. In Part I and Part II of the paper, mathematical models of bearing faults and spindle imbalance are integrated into the digital model of the spindle. This allows for simulating the operation of the spindle both with and without faults. The integration of fault models enables the generation of vibrations at sensor locations along the spindle shaft. The generated vibration data from the physics-based model are used to train a recurrent neural network-based (RNN) fault detection algorithm. The RNN learns from the labeled vibration spectra to identify different fault conditions. Bayesian optimization is used to automatically tune the hyperparameters governing the accuracy and efficiency of the learning models during the training process. The RNN classifiers are further fine-tuned using a small set of experimentally collected data for the generalization of the model on real-world data. Once the RNN classifier is trained, it can distinguish between different types of damage and identify their specific locations on the spindle assembly. The proposed algorithms achieved an accuracy of 98.43% on experimental data sets that were not used in training the network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suki完成签到,获得积分10
刚刚
Julia发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
lan完成签到 ,获得积分10
2秒前
panyunyun完成签到,获得积分10
3秒前
钟鸿盛Domi完成签到,获得积分10
3秒前
3秒前
3秒前
cgjj发布了新的文献求助10
3秒前
4秒前
5秒前
小刘哥儿发布了新的文献求助10
5秒前
时光发布了新的文献求助80
5秒前
5秒前
6秒前
hbsand完成签到,获得积分10
6秒前
廖程发布了新的文献求助10
6秒前
orixero应助尔尔采纳,获得10
7秒前
开放的白玉完成签到,获得积分10
7秒前
Domagin发布了新的文献求助10
7秒前
7秒前
ycccc99完成签到,获得积分10
8秒前
8秒前
苏苏发布了新的文献求助10
8秒前
8秒前
9秒前
李健的小迷弟应助老Mark采纳,获得10
9秒前
superhero完成签到,获得积分10
9秒前
喜悦绿兰发布了新的文献求助10
10秒前
cgjj完成签到,获得积分20
10秒前
10秒前
执着的清炎完成签到,获得积分10
10秒前
皮皮虾发布了新的文献求助10
11秒前
高高的山兰完成签到 ,获得积分10
11秒前
11秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3754546
求助须知:如何正确求助?哪些是违规求助? 3298093
关于积分的说明 10102689
捐赠科研通 3012698
什么是DOI,文献DOI怎么找? 1654686
邀请新用户注册赠送积分活动 789131
科研通“疑难数据库(出版商)”最低求助积分说明 753159