Precision Agriculture Through Deep Learning: Tomato Plant Multiple Diseases Recognition with CNN and Improved YOLOv7

卷叶 枯萎病 人工智能 叶斑病 计算机科学 塞普托利亚 温室 特征提取 模式识别(心理学) 尺度不变特征变换 园艺 生物 植物病毒 病毒 病毒学
作者
Shujaat Abbas,Saud Altaf,Shafiq Ahmad,Haitham A. Mahmoud,Adamali Shah Noor Mohamed,Rashid Ayub
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 49167-49183 被引量:4
标识
DOI:10.1109/access.2024.3383154
摘要

The ability to accurately identify tomato leaves in a field setting is crucial for achieving early yield estimation, particularly with the growing importance of Precision Agriculture.It may be difficult to determine exactly what diseases are affecting tomato plants due to the overlap in symptoms between different diseases.These are the earliest signs of disease that we found in the leaves of tomato plants.Yellow leaf curl virus, leaf mold, light blight, early blight, Mosaic virus, Septoria leaf spot, and bacterial spot are just some of the seven types of plant leaf diseases that were taken into account in this paper.For the development of a testbed environment for data acquisition, the greenhouse at the university was utilized for data on the leaves of tomato plants.This study proposes a target detection model based on the improved YOLOv7 to accurately detect and categorize tomato leaves in the field.To improve the model's feature extraction capabilities, we first incorporate the detection mechanisms SimAM and DAiAM into the framework of the baseline YOLOv7 network.To reduce the amount of information lost during the down sampling process, the max-pooling convolution (MPConv) structure is then improved.After that, this model arrived at a satisfactory outcome.Then, the image is segmented using the SIFT technique for classification, and the key regions are extracted for use in calculating feature values.After that, these data points are sent to a CNN classifier, which has a 98.8% accuracy rate and a 1.2% error rate.Finally, we compare our study to previous research to show how useful the proposed work is and to provide backing for the concept.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助普鲁卡因采纳,获得10
刚刚
zhaoyaoshi完成签到 ,获得积分10
刚刚
chiazy完成签到,获得积分10
1秒前
智慧金刚完成签到 ,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
迪鸣完成签到,获得积分0
3秒前
浪费青春传奇完成签到 ,获得积分10
6秒前
少女徐必成完成签到 ,获得积分10
6秒前
健壮的思枫完成签到,获得积分10
7秒前
棱擎1号完成签到 ,获得积分10
8秒前
10秒前
tian发布了新的文献求助10
10秒前
panpanliumin完成签到,获得积分0
11秒前
普鲁卡因发布了新的文献求助10
13秒前
Keyuuu30完成签到,获得积分0
13秒前
13秒前
学者风范完成签到 ,获得积分10
15秒前
进退须臾完成签到,获得积分10
16秒前
图图发布了新的文献求助10
16秒前
liujinjin完成签到,获得积分10
17秒前
甜甜醉波完成签到,获得积分10
17秒前
小不完成签到 ,获得积分10
18秒前
小心薛了你完成签到,获得积分10
24秒前
与离完成签到 ,获得积分10
24秒前
感性的俊驰完成签到 ,获得积分10
28秒前
疯狂的凡梦完成签到 ,获得积分10
29秒前
桥豆麻袋完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
Hello应助幸福的杨小夕采纳,获得10
31秒前
Lighten完成签到 ,获得积分10
32秒前
lyj完成签到 ,获得积分10
33秒前
成就茗完成签到 ,获得积分10
35秒前
ZD完成签到 ,获得积分10
44秒前
46秒前
英姑应助普鲁卡因采纳,获得10
49秒前
冰糕发布了新的文献求助10
51秒前
BettyNie完成签到 ,获得积分10
53秒前
优雅的平安完成签到 ,获得积分10
53秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022