Precision Agriculture Through Deep Learning: Tomato Plant Multiple Diseases Recognition with CNN and Improved YOLOv7

卷叶 枯萎病 人工智能 叶斑病 计算机科学 塞普托利亚 温室 特征提取 模式识别(心理学) 尺度不变特征变换 园艺 生物 植物病毒 病毒学 病毒
作者
Shujaat Abbas,Saud Altaf,Shafiq Ahmad,Haitham A. Mahmoud,Adamali Shah Noor Mohamed,Rashid Ayub
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 49167-49183 被引量:4
标识
DOI:10.1109/access.2024.3383154
摘要

The ability to accurately identify tomato leaves in a field setting is crucial for achieving early yield estimation, particularly with the growing importance of Precision Agriculture.It may be difficult to determine exactly what diseases are affecting tomato plants due to the overlap in symptoms between different diseases.These are the earliest signs of disease that we found in the leaves of tomato plants.Yellow leaf curl virus, leaf mold, light blight, early blight, Mosaic virus, Septoria leaf spot, and bacterial spot are just some of the seven types of plant leaf diseases that were taken into account in this paper.For the development of a testbed environment for data acquisition, the greenhouse at the university was utilized for data on the leaves of tomato plants.This study proposes a target detection model based on the improved YOLOv7 to accurately detect and categorize tomato leaves in the field.To improve the model's feature extraction capabilities, we first incorporate the detection mechanisms SimAM and DAiAM into the framework of the baseline YOLOv7 network.To reduce the amount of information lost during the down sampling process, the max-pooling convolution (MPConv) structure is then improved.After that, this model arrived at a satisfactory outcome.Then, the image is segmented using the SIFT technique for classification, and the key regions are extracted for use in calculating feature values.After that, these data points are sent to a CNN classifier, which has a 98.8% accuracy rate and a 1.2% error rate.Finally, we compare our study to previous research to show how useful the proposed work is and to provide backing for the concept.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sunwending发布了新的文献求助10
1秒前
夜良完成签到,获得积分10
1秒前
小二郎应助哈哈采纳,获得10
1秒前
1秒前
脑洞疼应助听寒采纳,获得10
2秒前
阿鹤发布了新的文献求助10
2秒前
LX完成签到,获得积分10
3秒前
cocolu应助sci339采纳,获得10
4秒前
5秒前
微风发布了新的文献求助10
5秒前
5秒前
6秒前
饱满绝施关注了科研通微信公众号
7秒前
8秒前
解惑完成签到,获得积分10
8秒前
科研通AI2S应助淡定的松子采纳,获得10
8秒前
闪闪凝梦完成签到 ,获得积分10
9秒前
天天快乐应助一个呼呼采纳,获得10
9秒前
无限毛豆发布了新的文献求助10
9秒前
曦曦完成签到,获得积分10
9秒前
JamesPei应助complex采纳,获得10
10秒前
11秒前
ww发布了新的文献求助10
11秒前
幽默无敌完成签到,获得积分10
12秒前
12秒前
13秒前
yellow完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
16秒前
欢欢喜完成签到,获得积分10
17秒前
17秒前
日喝抽打发布了新的文献求助10
17秒前
huy发布了新的文献求助20
18秒前
18秒前
JamesPei应助勤恳的语蓉采纳,获得10
19秒前
20秒前
wz发布了新的文献求助10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309402
求助须知:如何正确求助?哪些是违规求助? 2942782
关于积分的说明 8510751
捐赠科研通 2617868
什么是DOI,文献DOI怎么找? 1430622
科研通“疑难数据库(出版商)”最低求助积分说明 664180
邀请新用户注册赠送积分活动 649364