Precision Agriculture Through Deep Learning: Tomato Plant Multiple Diseases Recognition with CNN and Improved YOLOv7

卷叶 枯萎病 人工智能 叶斑病 计算机科学 塞普托利亚 温室 特征提取 模式识别(心理学) 尺度不变特征变换 园艺 生物 植物病毒 病毒 病毒学
作者
Shujaat Abbas,Saud Altaf,Shafiq Ahmad,Haitham A. Mahmoud,Adamali Shah Noor Mohamed,Rashid Ayub
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 49167-49183 被引量:4
标识
DOI:10.1109/access.2024.3383154
摘要

The ability to accurately identify tomato leaves in a field setting is crucial for achieving early yield estimation, particularly with the growing importance of Precision Agriculture.It may be difficult to determine exactly what diseases are affecting tomato plants due to the overlap in symptoms between different diseases.These are the earliest signs of disease that we found in the leaves of tomato plants.Yellow leaf curl virus, leaf mold, light blight, early blight, Mosaic virus, Septoria leaf spot, and bacterial spot are just some of the seven types of plant leaf diseases that were taken into account in this paper.For the development of a testbed environment for data acquisition, the greenhouse at the university was utilized for data on the leaves of tomato plants.This study proposes a target detection model based on the improved YOLOv7 to accurately detect and categorize tomato leaves in the field.To improve the model's feature extraction capabilities, we first incorporate the detection mechanisms SimAM and DAiAM into the framework of the baseline YOLOv7 network.To reduce the amount of information lost during the down sampling process, the max-pooling convolution (MPConv) structure is then improved.After that, this model arrived at a satisfactory outcome.Then, the image is segmented using the SIFT technique for classification, and the key regions are extracted for use in calculating feature values.After that, these data points are sent to a CNN classifier, which has a 98.8% accuracy rate and a 1.2% error rate.Finally, we compare our study to previous research to show how useful the proposed work is and to provide backing for the concept.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
perway发布了新的文献求助10
刚刚
科研小郭完成签到,获得积分10
刚刚
五月完成签到 ,获得积分10
1秒前
QQLL完成签到,获得积分10
2秒前
mochen0722完成签到,获得积分10
7秒前
Mr.Ren完成签到,获得积分10
8秒前
青衫完成签到 ,获得积分10
9秒前
俏皮诺言完成签到,获得积分10
15秒前
夏夏完成签到,获得积分20
24秒前
氮化硼小兵完成签到,获得积分10
24秒前
拾壹完成签到,获得积分10
25秒前
友好语风完成签到,获得积分10
26秒前
酷酷依秋完成签到,获得积分10
26秒前
liu完成签到 ,获得积分10
27秒前
土豆完成签到,获得积分10
28秒前
Lanny完成签到 ,获得积分10
30秒前
ooa4321完成签到,获得积分10
31秒前
31秒前
CLTTTt完成签到,获得积分10
32秒前
drizzling完成签到,获得积分10
33秒前
曦夜完成签到,获得积分10
34秒前
小二郎应助Tin采纳,获得10
36秒前
愛愛愛愛发布了新的文献求助10
36秒前
桃花源的瓶起子完成签到 ,获得积分10
38秒前
楚寅完成签到 ,获得积分10
39秒前
Yang完成签到 ,获得积分10
41秒前
丫头完成签到 ,获得积分10
41秒前
耿教授完成签到,获得积分20
43秒前
43秒前
狂野未来完成签到,获得积分10
46秒前
phoenix001完成签到,获得积分0
49秒前
七米日光完成签到 ,获得积分10
49秒前
chaosyw完成签到,获得积分10
49秒前
故意的问安完成签到 ,获得积分10
51秒前
仗炮由纪完成签到,获得积分10
55秒前
笑一笑完成签到 ,获得积分10
56秒前
仗炮由纪发布了新的文献求助20
58秒前
费城青年完成签到,获得积分10
59秒前
perway完成签到,获得积分20
59秒前
隐形曼青应助瞿寒采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167428
捐赠科研通 3248822
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664