Precision Agriculture Through Deep Learning: Tomato Plant Multiple Diseases Recognition with CNN and Improved YOLOv7

卷叶 枯萎病 人工智能 叶斑病 计算机科学 塞普托利亚 温室 特征提取 模式识别(心理学) 尺度不变特征变换 园艺 生物 植物病毒 病毒 病毒学
作者
Shujaat Abbas,Saud Altaf,Shafiq Ahmad,Haitham A. Mahmoud,Adamali Shah Noor Mohamed,Rashid Ayub
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 49167-49183 被引量:4
标识
DOI:10.1109/access.2024.3383154
摘要

The ability to accurately identify tomato leaves in a field setting is crucial for achieving early yield estimation, particularly with the growing importance of Precision Agriculture.It may be difficult to determine exactly what diseases are affecting tomato plants due to the overlap in symptoms between different diseases.These are the earliest signs of disease that we found in the leaves of tomato plants.Yellow leaf curl virus, leaf mold, light blight, early blight, Mosaic virus, Septoria leaf spot, and bacterial spot are just some of the seven types of plant leaf diseases that were taken into account in this paper.For the development of a testbed environment for data acquisition, the greenhouse at the university was utilized for data on the leaves of tomato plants.This study proposes a target detection model based on the improved YOLOv7 to accurately detect and categorize tomato leaves in the field.To improve the model's feature extraction capabilities, we first incorporate the detection mechanisms SimAM and DAiAM into the framework of the baseline YOLOv7 network.To reduce the amount of information lost during the down sampling process, the max-pooling convolution (MPConv) structure is then improved.After that, this model arrived at a satisfactory outcome.Then, the image is segmented using the SIFT technique for classification, and the key regions are extracted for use in calculating feature values.After that, these data points are sent to a CNN classifier, which has a 98.8% accuracy rate and a 1.2% error rate.Finally, we compare our study to previous research to show how useful the proposed work is and to provide backing for the concept.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助林灵凌采纳,获得10
刚刚
鲤鱼巧蕊发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
HY发布了新的文献求助10
1秒前
1秒前
1秒前
hkunyu完成签到 ,获得积分10
1秒前
慕青应助巴拉巴拉巴采纳,获得10
1秒前
linkman发布了新的文献求助10
2秒前
3秒前
dong发布了新的文献求助10
3秒前
3秒前
完美世界应助茶送白粥采纳,获得10
3秒前
慕青应助书文混四方采纳,获得10
4秒前
小孙孙完成签到,获得积分10
4秒前
znn发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
刘二宝发布了新的文献求助20
5秒前
甜甜发带完成签到,获得积分20
5秒前
方大完成签到,获得积分10
6秒前
7秒前
louxiaohan完成签到,获得积分10
7秒前
7秒前
Liu发布了新的文献求助10
8秒前
sunny发布了新的文献求助10
8秒前
8秒前
Yixiaofei发布了新的文献求助10
8秒前
9秒前
9秒前
Wu发布了新的文献求助10
10秒前
rose发布了新的文献求助10
10秒前
静静完成签到,获得积分10
10秒前
12w发布了新的文献求助10
10秒前
李爱国应助甜甜发带采纳,获得10
11秒前
张宇姝完成签到,获得积分10
11秒前
Bran发布了新的文献求助10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130