亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Precision Agriculture Through Deep Learning: Tomato Plant Multiple Diseases Recognition with CNN and Improved YOLOv7

卷叶 枯萎病 人工智能 叶斑病 计算机科学 塞普托利亚 温室 特征提取 模式识别(心理学) 尺度不变特征变换 园艺 生物 植物病毒 病毒 病毒学
作者
Shujaat Abbas,Saud Altaf,Shafiq Ahmad,Haitham A. Mahmoud,Adamali Shah Noor Mohamed,Rashid Ayub
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 49167-49183 被引量:4
标识
DOI:10.1109/access.2024.3383154
摘要

The ability to accurately identify tomato leaves in a field setting is crucial for achieving early yield estimation, particularly with the growing importance of Precision Agriculture.It may be difficult to determine exactly what diseases are affecting tomato plants due to the overlap in symptoms between different diseases.These are the earliest signs of disease that we found in the leaves of tomato plants.Yellow leaf curl virus, leaf mold, light blight, early blight, Mosaic virus, Septoria leaf spot, and bacterial spot are just some of the seven types of plant leaf diseases that were taken into account in this paper.For the development of a testbed environment for data acquisition, the greenhouse at the university was utilized for data on the leaves of tomato plants.This study proposes a target detection model based on the improved YOLOv7 to accurately detect and categorize tomato leaves in the field.To improve the model's feature extraction capabilities, we first incorporate the detection mechanisms SimAM and DAiAM into the framework of the baseline YOLOv7 network.To reduce the amount of information lost during the down sampling process, the max-pooling convolution (MPConv) structure is then improved.After that, this model arrived at a satisfactory outcome.Then, the image is segmented using the SIFT technique for classification, and the key regions are extracted for use in calculating feature values.After that, these data points are sent to a CNN classifier, which has a 98.8% accuracy rate and a 1.2% error rate.Finally, we compare our study to previous research to show how useful the proposed work is and to provide backing for the concept.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助袁青寒采纳,获得10
8秒前
Owen应助活泼学生采纳,获得10
9秒前
常有李完成签到,获得积分10
24秒前
斯文败类应助袁青寒采纳,获得10
37秒前
飞天大南瓜完成签到,获得积分10
49秒前
搜集达人应助袁青寒采纳,获得10
56秒前
顾矜应助袁青寒采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Ljm应助袁青寒采纳,获得10
1分钟前
1分钟前
小二郎应助活泼学生采纳,获得10
1分钟前
1分钟前
1分钟前
罐头食品发布了新的文献求助10
1分钟前
沉静天思完成签到,获得积分10
2分钟前
思源应助沉静天思采纳,获得10
2分钟前
2分钟前
粱青寒完成签到,获得积分10
2分钟前
沉静天思发布了新的文献求助10
2分钟前
2分钟前
活泼学生发布了新的文献求助10
2分钟前
2分钟前
HYQ完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助50
3分钟前
雨雨发布了新的文献求助30
3分钟前
Enso完成签到,获得积分10
3分钟前
4分钟前
Enso发布了新的文献求助10
4分钟前
雨雨完成签到,获得积分10
4分钟前
vbnn完成签到 ,获得积分10
5分钟前
juliar完成签到 ,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
宋艳芳完成签到,获得积分10
6分钟前
笨笨山芙完成签到 ,获得积分10
7分钟前
鹏笑完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900929
求助须知:如何正确求助?哪些是违规求助? 4180573
关于积分的说明 12977069
捐赠科研通 3945389
什么是DOI,文献DOI怎么找? 2164089
邀请新用户注册赠送积分活动 1182384
关于科研通互助平台的介绍 1088697