Valorization of waste graphite in spent lithium-ion batteries to graphene via modified mechanical exfoliation and the mechanism exploration

石墨 剥脱关节 材料科学 石墨烯 化学工程 浸出(土壤学) 锂(药物) 杂质 脱水 复合材料 纳米技术 化学 有机化学 医学 内分泌学 工程类 生物化学 环境科学 土壤科学 土壤水分
作者
Yanjun Liu,Jiadong Yu,Yukun Zhao,Jiarui Lai,Jinhui Li,Quanyin Tan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:449: 141823-141823 被引量:4
标识
DOI:10.1016/j.jclepro.2024.141823
摘要

In the electrodes of spent lithium-ion batteries, graphite, due to its layered structure and crystalline composition, presents significant recyclable value, yet it has not been fully utilized. This study proposes a modified mechanical exfoliation method (MEM), which employs leaching-drying pretreatment to transform waste graphite into two-dimensional graphene. Three drying methods were evaluated, among which freeze drying was found to be the most conducive for exfoliation. Pneumatic drying, being basic and simple, did not exhibit any special effects that benefit exfoliation. XRD results showed that leaching restores the lamellar structure of graphite, with peak intensity ( × 105) increasing from 6.5 to 8.9–10.1. XPS analysis revealed that vacuum roasting drying leads to dehydration condensation of hydroxyl groups between layers, resulting in the obtained graphite having the best dehydration effect and the lowest oxygen content, at only 1.89%, but this enhances interlayer forces, which is counterproductive for exfoliation. In contrast, freeze drying, through the volumetric expansion caused by the freezing of water, disrupts the interlayer forces, achieving an interlayer spacing of 337.5 nm, which facilitates the exfoliation of graphene. This was confirmed by TEM results. This method effectively overcomes the problem of impurity contamination in waste graphite, providing a new approach for the high-value utilization and green recycling of graphite in spent lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
赵某人完成签到,获得积分10
1秒前
慕青应助Zz采纳,获得10
2秒前
慕青应助一个朋友采纳,获得10
2秒前
2秒前
nicol.z发布了新的文献求助10
2秒前
2秒前
由又柔完成签到,获得积分10
2秒前
3秒前
HEHXU发布了新的文献求助10
3秒前
3秒前
3秒前
研友_nVqwxL发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
醉熏的如雪完成签到,获得积分10
4秒前
充电宝应助一一采纳,获得10
4秒前
烟花应助zhlh采纳,获得10
4秒前
英姑应助西番雅采纳,获得10
5秒前
机会啊发布了新的文献求助10
5秒前
高源源发布了新的文献求助10
5秒前
ynn驳回了彭于晏应助
6秒前
zhuyutian发布了新的文献求助10
6秒前
6秒前
7秒前
Huck发布了新的文献求助10
7秒前
Ava应助Yy采纳,获得10
7秒前
8秒前
魏俏红发布了新的文献求助10
8秒前
8秒前
活力安南完成签到,获得积分10
8秒前
小蘑菇应助执着乐双采纳,获得10
9秒前
9秒前
10秒前
和谐蛋蛋完成签到,获得积分10
11秒前
炙热的白风完成签到,获得积分20
11秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296653
求助须知:如何正确求助?哪些是违规求助? 2932396
关于积分的说明 8456490
捐赠科研通 2604886
什么是DOI,文献DOI怎么找? 1422087
科研通“疑难数据库(出版商)”最低求助积分说明 661288
邀请新用户注册赠送积分活动 644356