Deep learning-assisted detection and segmentation of intracranial hemorrhage in noncontrast computed tomography scans of acute stroke patients: a systematic review and meta-analysis

医学 荟萃分析 计算机断层摄影术 接收机工作特性 放射科 冲程(发动机) 诊断试验中的似然比 曲线下面积 计算机断层血管造影 核医学 内科学 机械工程 工程类
作者
Ping Hu,Tengfeng Yan,Bing Xiao,Hongxin Shu,Yilei Sheng,Yanze Wu,Lei Shu,Shigang Lv,Minhua Ye,Yanjun Gong,Minxian Wu,Xiang Yang Zhu
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000001266
摘要

Deep learning (DL)-assisted detection and segmentation of intracranial hemorrhage stroke in noncontrast computed tomography (NCCT) scans are well-established, but evidence on this topic is lacking.PubMed and Embase databases were searched from their inception to November 2023 to identify related studies. The primary outcomes included sensitivity, specificity, and the Dice Similarity Coefficient (DSC); while the secondary outcomes were positive predictive value (PPV), negative predictive value (NPV), precision, area under the receiver operating characteristic curve (AUROC), processing time, and volume of bleeding. Random-effect model and bivariate model were used to pooled independent effect size and diagnostic meta-analysis data, respectively.A total of 36 original studies were included in this meta-analysis. Pooled results indicated that DL technologies have a comparable performance in intracranial hemorrhage detection and segmentation with high values of sensitivity (0.89, 95% CI: 0.88-0.90), specificity (0.91, 95% CI: 0.89-0.93), AUROC (0.94, 95% CI: 0.93-0.95), PPV (0.92, 95% CI: 0.91-0.93), NPV (0.94, 95% CI: 0.91-0.96), precision (0.83, 95% CI: 0.77-0.90), DSC (0.84, 95% CI: 0.82-0.87). There is no significant difference between manual labeling and DL technologies in hemorrhage quantification (MD 0.08, 95% CI: -5.45-5.60, P=0.98), but the latter takes less process time than manual labeling (WMD 2.26, 95% CI: 1.96-2.56, P=0.001).This systematic review has identified a range of DL algorithms that the performance was comparable to experienced clinicians in hemorrhage lesions identification, segmentation, and quantification but with greater efficiency and reduced cost. It is highly emphasized that multicenter randomized controlled clinical trials will be needed to validate the performance of these tools in the future, paving the way for fast and efficient decision-making during clinical procedure in patients with acute hemorrhagic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋芷完成签到,获得积分10
刚刚
1秒前
杨怡红发布了新的文献求助10
1秒前
ndsiu完成签到,获得积分10
1秒前
科研通AI6应助欣慰妙海采纳,获得30
2秒前
科研通AI6应助Islet采纳,获得10
4秒前
张旭发布了新的文献求助10
6秒前
123333发布了新的文献求助10
6秒前
天气好的话完成签到,获得积分10
6秒前
冷傲的小小完成签到,获得积分20
7秒前
彭于晏应助Rita采纳,获得10
8秒前
8秒前
杜康完成签到,获得积分10
8秒前
果然完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
12秒前
Orange应助桀庚采纳,获得10
13秒前
13秒前
vivian完成签到,获得积分10
14秒前
15秒前
梅雨萌完成签到,获得积分10
15秒前
天真的乌发布了新的文献求助10
15秒前
张旭发布了新的文献求助10
16秒前
16秒前
Chem发布了新的文献求助10
16秒前
11111iiiii发布了新的文献求助10
16秒前
517完成签到 ,获得积分10
16秒前
小蘑菇应助张一二二二采纳,获得10
17秒前
太Crazy辣完成签到 ,获得积分10
17秒前
17秒前
111发布了新的文献求助10
17秒前
酷波er应助shanshan采纳,获得30
18秒前
18秒前
guo发布了新的文献求助10
18秒前
随意发布了新的文献求助10
18秒前
可爱的函函应助秀秀采纳,获得30
19秒前
庾烙发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914