Better Together: Data-Free Multi-Student Coevolved Distillation

计算机科学 蒸馏 对抗制 机器学习 班级(哲学) 人工智能 有机化学 化学
作者
Weijie Chen,Yunyi Xuan,Shicai Yang,Dong Xie,Luojun Lin,Yueting Zhuang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111146-111146
标识
DOI:10.1016/j.knosys.2023.111146
摘要

Data-Free Knowledge Distillation (DFKD) aims to craft a customized student model from a pre-trained teacher model by synthesizing surrogate training images. However, a seldom-investigated scenario is to distill the knowledge to multiple heterogeneous students simultaneously. In this paper, we aim to study how to improve the performance by coevolving peer students, termed Data-Free Multi-Student Coevolved Distillation (DF-MSCD). Based on previous DFKD methods, we advance DF-MSCD by improving the data quality from the perspective of synthesizing unbiased, informative and diverse surrogate samples: 1) Unbiased. The disconnection of image synthesis among different timestamps during DFKD will lead to an unnoticed class imbalance problem. To tackle this problem, we reform the prior art into an unbiased variant by bridging the label distribution of the synthesized data among different timestamps. 2) Informative. Different from single-student DFKD, we encourage the interactions not only between teacher-student pairs, but also within peer students, driving a more comprehensive knowledge distillation. To this end, we devise a novel Inter-Student Adversarial Learning method to coevolve peer students with mutual benefits. 3) Diverse. To further promote Inter-Student Adversarial Learning, we develop Mixture-of-Generators, in which multiple generators are optimized to synthesize different yet complementary samples by playing min–max games with multiple students. Experiments are conducted to validate the effectiveness and efficiency of the proposed DF-MSCD, surpassing the existing state-of-the-arts on multiple popular benchmarks. To emphasize, our method can obtain heterogeneous students by training once, which is superior to single-student DFKD methods in terms of both training time and testing accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhl完成签到,获得积分10
5秒前
慕青应助鲜艳的芹采纳,获得10
5秒前
wuduolife发布了新的文献求助10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
Emma应助科研通管家采纳,获得10
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
宅多点应助科研通管家采纳,获得10
9秒前
宅多点应助科研通管家采纳,获得10
9秒前
宅多点应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
10秒前
Lucas应助Sy采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
Emma应助科研通管家采纳,获得20
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
科研通AI2S应助废柴采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560070
求助须知:如何正确求助?哪些是违规求助? 4645240
关于积分的说明 14674548
捐赠科研通 4586369
什么是DOI,文献DOI怎么找? 2516380
邀请新用户注册赠送积分活动 1490038
关于科研通互助平台的介绍 1460866