重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Better Together: Data-Free Multi-Student Coevolved Distillation

计算机科学 蒸馏 对抗制 机器学习 班级(哲学) 人工智能 有机化学 化学
作者
Weijie Chen,Yunyi Xuan,Shicai Yang,Dong Xie,Luojun Lin,Yueting Zhuang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111146-111146
标识
DOI:10.1016/j.knosys.2023.111146
摘要

Data-Free Knowledge Distillation (DFKD) aims to craft a customized student model from a pre-trained teacher model by synthesizing surrogate training images. However, a seldom-investigated scenario is to distill the knowledge to multiple heterogeneous students simultaneously. In this paper, we aim to study how to improve the performance by coevolving peer students, termed Data-Free Multi-Student Coevolved Distillation (DF-MSCD). Based on previous DFKD methods, we advance DF-MSCD by improving the data quality from the perspective of synthesizing unbiased, informative and diverse surrogate samples: 1) Unbiased. The disconnection of image synthesis among different timestamps during DFKD will lead to an unnoticed class imbalance problem. To tackle this problem, we reform the prior art into an unbiased variant by bridging the label distribution of the synthesized data among different timestamps. 2) Informative. Different from single-student DFKD, we encourage the interactions not only between teacher-student pairs, but also within peer students, driving a more comprehensive knowledge distillation. To this end, we devise a novel Inter-Student Adversarial Learning method to coevolve peer students with mutual benefits. 3) Diverse. To further promote Inter-Student Adversarial Learning, we develop Mixture-of-Generators, in which multiple generators are optimized to synthesize different yet complementary samples by playing min–max games with multiple students. Experiments are conducted to validate the effectiveness and efficiency of the proposed DF-MSCD, surpassing the existing state-of-the-arts on multiple popular benchmarks. To emphasize, our method can obtain heterogeneous students by training once, which is superior to single-student DFKD methods in terms of both training time and testing accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由自在完成签到,获得积分10
刚刚
毛绒小鼠完成签到,获得积分10
刚刚
zong发布了新的文献求助10
刚刚
kevin完成签到 ,获得积分10
刚刚
123noo发布了新的文献求助10
刚刚
流木完成签到,获得积分10
刚刚
李爱国应助zhuxing采纳,获得10
1秒前
Liu发布了新的文献求助10
1秒前
Lucinda发布了新的文献求助30
1秒前
科研通AI6应助大宝贝采纳,获得10
1秒前
务实的紫伊完成签到,获得积分10
2秒前
小二郎应助快乐的小胖子采纳,获得10
2秒前
2秒前
赵紫怡发布了新的文献求助10
2秒前
2秒前
高凡发布了新的文献求助10
3秒前
沉默的瑞宝完成签到,获得积分10
3秒前
打工人完成签到,获得积分10
3秒前
研友_V8RdVn完成签到,获得积分10
3秒前
张祖伦发布了新的文献求助10
4秒前
4秒前
Akim应助吴彦祖采纳,获得10
4秒前
4秒前
廷聿发布了新的文献求助10
4秒前
bestkomorebi完成签到,获得积分10
4秒前
4秒前
5秒前
踏实的雨灵完成签到,获得积分10
5秒前
5秒前
5秒前
流木发布了新的文献求助10
5秒前
haha关注了科研通微信公众号
5秒前
6秒前
思源应助艾灿采纳,获得10
6秒前
gt发布了新的文献求助20
6秒前
彭于晏应助哭泣的煎饼采纳,获得10
7秒前
行路人完成签到,获得积分10
7秒前
韩小小完成签到 ,获得积分10
7秒前
欢喜海发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654