Better Together: Data-Free Multi-Student Coevolved Distillation

计算机科学 蒸馏 对抗制 机器学习 班级(哲学) 人工智能 有机化学 化学
作者
Weijie Chen,Yunyi Xuan,Shicai Yang,Dong Xie,Luojun Lin,Yueting Zhuang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111146-111146
标识
DOI:10.1016/j.knosys.2023.111146
摘要

Data-Free Knowledge Distillation (DFKD) aims to craft a customized student model from a pre-trained teacher model by synthesizing surrogate training images. However, a seldom-investigated scenario is to distill the knowledge to multiple heterogeneous students simultaneously. In this paper, we aim to study how to improve the performance by coevolving peer students, termed Data-Free Multi-Student Coevolved Distillation (DF-MSCD). Based on previous DFKD methods, we advance DF-MSCD by improving the data quality from the perspective of synthesizing unbiased, informative and diverse surrogate samples: 1) Unbiased. The disconnection of image synthesis among different timestamps during DFKD will lead to an unnoticed class imbalance problem. To tackle this problem, we reform the prior art into an unbiased variant by bridging the label distribution of the synthesized data among different timestamps. 2) Informative. Different from single-student DFKD, we encourage the interactions not only between teacher-student pairs, but also within peer students, driving a more comprehensive knowledge distillation. To this end, we devise a novel Inter-Student Adversarial Learning method to coevolve peer students with mutual benefits. 3) Diverse. To further promote Inter-Student Adversarial Learning, we develop Mixture-of-Generators, in which multiple generators are optimized to synthesize different yet complementary samples by playing min–max games with multiple students. Experiments are conducted to validate the effectiveness and efficiency of the proposed DF-MSCD, surpassing the existing state-of-the-arts on multiple popular benchmarks. To emphasize, our method can obtain heterogeneous students by training once, which is superior to single-student DFKD methods in terms of both training time and testing accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
99发布了新的文献求助10
刚刚
梁jj完成签到,获得积分10
刚刚
852应助小短腿飞行员采纳,获得10
1秒前
彭于晏应助漾漾采纳,获得10
2秒前
Nancy发布了新的文献求助10
2秒前
2秒前
jianyulv应助司空博涛采纳,获得10
2秒前
魏lin发布了新的文献求助10
3秒前
掠影发布了新的文献求助10
3秒前
3秒前
星辰大海应助liushu采纳,获得10
3秒前
Stella应助zjmm采纳,获得10
3秒前
3秒前
汉堡包应助婧婧婧采纳,获得10
4秒前
4秒前
彭于晏应助59采纳,获得10
4秒前
buno发布了新的文献求助30
4秒前
搜集达人应助专注的芷蕾采纳,获得10
5秒前
5秒前
Stella应助阔达的双双采纳,获得10
5秒前
5秒前
5秒前
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
一叶知秋应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得20
6秒前
核桃应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
贝贝应助科研通管家采纳,获得150
6秒前
雯雯发布了新的文献求助10
6秒前
所所应助科研通管家采纳,获得10
6秒前
Wendy发布了新的文献求助10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得30
6秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588167
求助须知:如何正确求助?哪些是违规求助? 4671269
关于积分的说明 14786547
捐赠科研通 4624667
什么是DOI,文献DOI怎么找? 2531667
邀请新用户注册赠送积分活动 1500268
关于科研通互助平台的介绍 1468240