Better Together: Data-Free Multi-Student Coevolved Distillation

计算机科学 蒸馏 对抗制 机器学习 班级(哲学) 人工智能 有机化学 化学
作者
Weijie Chen,Yunyi Xuan,Shicai Yang,Dong Xie,Luojun Lin,Yueting Zhuang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111146-111146
标识
DOI:10.1016/j.knosys.2023.111146
摘要

Data-Free Knowledge Distillation (DFKD) aims to craft a customized student model from a pre-trained teacher model by synthesizing surrogate training images. However, a seldom-investigated scenario is to distill the knowledge to multiple heterogeneous students simultaneously. In this paper, we aim to study how to improve the performance by coevolving peer students, termed Data-Free Multi-Student Coevolved Distillation (DF-MSCD). Based on previous DFKD methods, we advance DF-MSCD by improving the data quality from the perspective of synthesizing unbiased, informative and diverse surrogate samples: 1) Unbiased. The disconnection of image synthesis among different timestamps during DFKD will lead to an unnoticed class imbalance problem. To tackle this problem, we reform the prior art into an unbiased variant by bridging the label distribution of the synthesized data among different timestamps. 2) Informative. Different from single-student DFKD, we encourage the interactions not only between teacher-student pairs, but also within peer students, driving a more comprehensive knowledge distillation. To this end, we devise a novel Inter-Student Adversarial Learning method to coevolve peer students with mutual benefits. 3) Diverse. To further promote Inter-Student Adversarial Learning, we develop Mixture-of-Generators, in which multiple generators are optimized to synthesize different yet complementary samples by playing min–max games with multiple students. Experiments are conducted to validate the effectiveness and efficiency of the proposed DF-MSCD, surpassing the existing state-of-the-arts on multiple popular benchmarks. To emphasize, our method can obtain heterogeneous students by training once, which is superior to single-student DFKD methods in terms of both training time and testing accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mk发布了新的文献求助10
刚刚
刚刚
1秒前
三金脚脚完成签到 ,获得积分10
3秒前
飞龙完成签到,获得积分10
4秒前
5秒前
6秒前
木子发布了新的文献求助10
6秒前
英俊的铭应助lmslms采纳,获得10
7秒前
小平发布了新的文献求助10
7秒前
重要忆秋完成签到,获得积分10
7秒前
9秒前
华仔应助呆呆瓜采纳,获得10
9秒前
魏雪梅shirley完成签到,获得积分10
10秒前
yanghaobo完成签到,获得积分10
10秒前
Hello应助乐橙采纳,获得10
10秒前
酷炫思天发布了新的文献求助10
11秒前
13秒前
15秒前
自觉樱桃发布了新的文献求助50
15秒前
对方正在看文献完成签到,获得积分10
15秒前
秉文完成签到,获得积分10
16秒前
锴子完成签到,获得积分10
17秒前
852应助机器猫采纳,获得30
18秒前
18秒前
20秒前
科研通AI2S应助木子采纳,获得10
21秒前
开心应助xl采纳,获得10
21秒前
22秒前
幻月发布了新的文献求助10
22秒前
plain完成签到,获得积分10
22秒前
乐橙发布了新的文献求助10
25秒前
28秒前
30秒前
31秒前
棉花糖完成签到 ,获得积分10
31秒前
土豆泥拌土豆块完成签到 ,获得积分10
32秒前
32秒前
33秒前
lll发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812311
关于积分的说明 7895133
捐赠科研通 2471181
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086