Better Together: Data-Free Multi-Student Coevolved Distillation

计算机科学 蒸馏 对抗制 机器学习 班级(哲学) 人工智能 有机化学 化学
作者
Weijie Chen,Yunyi Xuan,Shicai Yang,Dong Xie,Luojun Lin,Yueting Zhuang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:283: 111146-111146
标识
DOI:10.1016/j.knosys.2023.111146
摘要

Data-Free Knowledge Distillation (DFKD) aims to craft a customized student model from a pre-trained teacher model by synthesizing surrogate training images. However, a seldom-investigated scenario is to distill the knowledge to multiple heterogeneous students simultaneously. In this paper, we aim to study how to improve the performance by coevolving peer students, termed Data-Free Multi-Student Coevolved Distillation (DF-MSCD). Based on previous DFKD methods, we advance DF-MSCD by improving the data quality from the perspective of synthesizing unbiased, informative and diverse surrogate samples: 1) Unbiased. The disconnection of image synthesis among different timestamps during DFKD will lead to an unnoticed class imbalance problem. To tackle this problem, we reform the prior art into an unbiased variant by bridging the label distribution of the synthesized data among different timestamps. 2) Informative. Different from single-student DFKD, we encourage the interactions not only between teacher-student pairs, but also within peer students, driving a more comprehensive knowledge distillation. To this end, we devise a novel Inter-Student Adversarial Learning method to coevolve peer students with mutual benefits. 3) Diverse. To further promote Inter-Student Adversarial Learning, we develop Mixture-of-Generators, in which multiple generators are optimized to synthesize different yet complementary samples by playing min–max games with multiple students. Experiments are conducted to validate the effectiveness and efficiency of the proposed DF-MSCD, surpassing the existing state-of-the-arts on multiple popular benchmarks. To emphasize, our method can obtain heterogeneous students by training once, which is superior to single-student DFKD methods in terms of both training time and testing accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
诚心初晴完成签到,获得积分10
2秒前
3秒前
hwq123完成签到,获得积分10
3秒前
doris完成签到,获得积分10
3秒前
冷静的高烽完成签到,获得积分10
3秒前
大胆的追命完成签到,获得积分10
4秒前
孤独的书雁完成签到,获得积分10
4秒前
4秒前
麦麦完成签到,获得积分10
5秒前
夹心发布了新的文献求助10
5秒前
黎医生发布了新的文献求助10
6秒前
舒心靖琪完成签到 ,获得积分10
6秒前
6秒前
情怀应助卷卷采纳,获得10
6秒前
重重完成签到,获得积分10
6秒前
仁爱誉完成签到,获得积分10
6秒前
7秒前
SciGPT应助真理采纳,获得10
7秒前
单薄怜寒完成签到 ,获得积分10
7秒前
7秒前
hzs发布了新的文献求助10
7秒前
jjhh完成签到,获得积分20
7秒前
7秒前
自然妙竹发布了新的文献求助10
7秒前
如意水彤完成签到,获得积分10
8秒前
whisper发布了新的文献求助20
8秒前
宋芝恬完成签到,获得积分10
8秒前
Ava应助Ffan采纳,获得10
9秒前
Hello应助TT采纳,获得10
9秒前
10秒前
旺旺一切顺利完成签到,获得积分20
10秒前
10秒前
好哥哥发布了新的文献求助10
10秒前
11秒前
zhuding1978发布了新的文献求助10
12秒前
Jasper应助YY采纳,获得10
13秒前
Active完成签到,获得积分10
13秒前
耶椰耶完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911514
求助须知:如何正确求助?哪些是违规求助? 4186972
关于积分的说明 13002173
捐赠科研通 3954804
什么是DOI,文献DOI怎么找? 2168480
邀请新用户注册赠送积分活动 1186929
关于科研通互助平台的介绍 1094247