Better Together: Data-Free Multi-Student Coevolved Distillation

计算机科学 蒸馏 对抗制 机器学习 班级(哲学) 人工智能 有机化学 化学
作者
Weijie Chen,Yunyi Xuan,Shicai Yang,Dong Xie,Luojun Lin,Yueting Zhuang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111146-111146
标识
DOI:10.1016/j.knosys.2023.111146
摘要

Data-Free Knowledge Distillation (DFKD) aims to craft a customized student model from a pre-trained teacher model by synthesizing surrogate training images. However, a seldom-investigated scenario is to distill the knowledge to multiple heterogeneous students simultaneously. In this paper, we aim to study how to improve the performance by coevolving peer students, termed Data-Free Multi-Student Coevolved Distillation (DF-MSCD). Based on previous DFKD methods, we advance DF-MSCD by improving the data quality from the perspective of synthesizing unbiased, informative and diverse surrogate samples: 1) Unbiased. The disconnection of image synthesis among different timestamps during DFKD will lead to an unnoticed class imbalance problem. To tackle this problem, we reform the prior art into an unbiased variant by bridging the label distribution of the synthesized data among different timestamps. 2) Informative. Different from single-student DFKD, we encourage the interactions not only between teacher-student pairs, but also within peer students, driving a more comprehensive knowledge distillation. To this end, we devise a novel Inter-Student Adversarial Learning method to coevolve peer students with mutual benefits. 3) Diverse. To further promote Inter-Student Adversarial Learning, we develop Mixture-of-Generators, in which multiple generators are optimized to synthesize different yet complementary samples by playing min–max games with multiple students. Experiments are conducted to validate the effectiveness and efficiency of the proposed DF-MSCD, surpassing the existing state-of-the-arts on multiple popular benchmarks. To emphasize, our method can obtain heterogeneous students by training once, which is superior to single-student DFKD methods in terms of both training time and testing accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷静的谷云完成签到,获得积分10
刚刚
Jack完成签到,获得积分10
1秒前
1秒前
王路飞发布了新的文献求助10
1秒前
1秒前
刘国建郭菱香完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
英俊的铭应助整齐的夏之采纳,获得10
2秒前
3秒前
科研岗完成签到,获得积分10
3秒前
gdverzn发布了新的文献求助10
3秒前
科研狗发布了新的文献求助10
3秒前
stel7发布了新的文献求助10
4秒前
王清水完成签到 ,获得积分10
4秒前
5秒前
5秒前
Ava应助tzj采纳,获得30
5秒前
江逾白发布了新的文献求助10
5秒前
学就完了发布了新的文献求助10
5秒前
Hoshi完成签到,获得积分10
5秒前
希望天下0贩的0应助yucj采纳,获得10
6秒前
Bubble_bei完成签到 ,获得积分10
6秒前
6秒前
xixi发布了新的文献求助10
6秒前
7秒前
8秒前
Hello应助Dorr采纳,获得10
8秒前
tree完成签到,获得积分10
8秒前
田様应助三石采纳,获得10
9秒前
9秒前
qawsed发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
orixero应助123采纳,获得10
11秒前
11秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388804
求助须知:如何正确求助?哪些是违规求助? 4511068
关于积分的说明 14037587
捐赠科研通 4421835
什么是DOI,文献DOI怎么找? 2428954
邀请新用户注册赠送积分活动 1421511
关于科研通互助平台的介绍 1400661