The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification

光催化 石墨氮化碳 异质结 纳米技术 载流子 化学 氮化碳 半导体 制作 合理设计 催化作用 材料科学 光电子学 有机化学 医学 替代医学 病理
作者
Dandan Ma,Zhuoming Zhang,Yajun Zou,Jiantao Chen,Jian‐Wen Shi
出处
期刊:Coordination Chemistry Reviews [Elsevier]
卷期号:500: 215489-215489 被引量:78
标识
DOI:10.1016/j.ccr.2023.215489
摘要

Polymeric semiconductor, Graphitic Carbon Nitride (g-C3N4), has emerged as one of the desired materials in photocatalytic hydrogen evolution (PHE) due to its visible-light activity, facile accessibility, low-cost, chemical stability, as well as the unique layered structure. However, pure g-C3N4 photocatalyst suffers from limited photocatalytic performance due to the low efficiency of charge carrier separation and serious charge recombination. Researches over the past few decades have shown that the photocatalytic active of g-C3N4 can be easily affected by many factors including spatial morphology, electronic structure, as well as the interaction between g-C3N4 and other materials. This review gives a comprehensive introduction over the basic properties and the development of g-C3N4 in PHE. A brief history and the basic properties are firstly introduced. After then, this review introduces the fabrication and the limits of g-C3N4 in PHE, followed by the rational methods in improving the photocatalytic active of g-C3N4 including the self-modification strategies (e.g., molecular structure regulation, defect engineering and microstructure manipulation) and the exogenous modification strategies (e.g., the deposition of co-catalyst and the construction of g-C3N4 based heterostructure). Lastly, this review discusses the major challenges and opportunities of g-C3N4 in photocatalytic field. It is believed that this review is benefit for proposing more effective solutions in developing high active g-C3N4 photocatalysts based on a comprehensive understanding of g-C3N4 material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助Star采纳,获得10
1秒前
qiu发布了新的文献求助10
1秒前
3秒前
3秒前
沉醉夜色完成签到,获得积分10
5秒前
小黑子发布了新的文献求助10
5秒前
5秒前
5秒前
学好久发布了新的文献求助10
5秒前
5秒前
zqz完成签到,获得积分10
6秒前
CipherSage应助ylf采纳,获得10
6秒前
kiki发布了新的文献求助10
8秒前
wang发布了新的文献求助10
8秒前
9秒前
施凝发布了新的文献求助10
9秒前
9秒前
健壮台灯完成签到,获得积分10
10秒前
11秒前
ZM关注了科研通微信公众号
12秒前
CSC发布了新的文献求助20
12秒前
左岸关注了科研通微信公众号
13秒前
13秒前
岛屿完成签到 ,获得积分10
13秒前
14秒前
liaoliaoliao发布了新的文献求助100
14秒前
14秒前
14秒前
15秒前
15秒前
17秒前
帅帅哈发布了新的文献求助10
17秒前
迷路师发布了新的文献求助10
17秒前
z2完成签到,获得积分10
17秒前
李爱国应助ye采纳,获得10
18秒前
18秒前
旺旺饼干发布了新的文献求助10
18秒前
充电宝应助Messi采纳,获得10
19秒前
LHT完成签到,获得积分10
19秒前
19秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Experimental investigation of the mechanics of explosive welding by means of a liquid analogue 1060
Die Elektra-Partitur von Richard Strauss : ein Lehrbuch für die Technik der dramatischen Komposition 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 600
大平正芳: 「戦後保守」とは何か 550
Sustainability in ’Tides Chemistry 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3007258
求助须知:如何正确求助?哪些是违规求助? 2666586
关于积分的说明 7231523
捐赠科研通 2303875
什么是DOI,文献DOI怎么找? 1221654
科研通“疑难数据库(出版商)”最低求助积分说明 595231
版权声明 593410