适体
黄曲霉毒素
SELEX适体技术
色谱法
化学
重复性
DNA
指数富集配体系统进化
纳米技术
材料科学
分子生物学
生物
生物化学
食品科学
核糖核酸
基因
作者
Kuang-Yi Chang,Chin‐Yih Hong,Kai‐Chien Yang,Bo‐Chuan Hsieh
出处
期刊:International Journal of Electrochemical Science
[ESG]
日期:2023-08-01
卷期号:18 (10): 100307-100307
被引量:2
标识
DOI:10.1016/j.ijoes.2023.100307
摘要
Magnetic-assisted rapid aptamer selection (MARAS) is a technique that uses magnetic nanoparticles to efficiently separate aptamer-target complexes under an alternating magnetic field, thereby reducing the time and number of selection rounds required. This study investigated the applicability of MARAS in selecting aptamers against a small molecule, aflatoxin B1 (AFB1). Among the six MARAS-selected aptamers, DNA 1 demonstrated the highest binding affinity. Its Kd value, further estimated from aptasensing data, was 43.7 nM, which is comparable to the Kd value of the patented aptamer (55.6 nM). The DNA 1-immobilized aptasensor exhibited good repeatability (RSD < 7%, N = 3), linearity (R2 = 0.9613 from 1 to 100 nM), and a calculated LOD of 0.42 nM. Specificity testing indicated that interferences from ochratoxin A, aflatoxin B2, aflatoxin G1, and aflatoxin G2 were all below 7%. The developed aptasensor was also applied to detect AFB1 content in the peanut sample matrix, achieving a good recovery rate ranging from 94.3% to 112.2%. Overall, this study confirms the potential of MARAS as a promising technique for identifying aptamers with strong binding affinities towards low molecular weight compounds such as AFB1. Additionally, the DNA 1-immobilized aptasensor provided a simple, accurate, and cost-effective alternative for AFB1 monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI