Construction of similarity measure for intuitionistic fuzzy sets and its application in face recognition and software quality evaluation

相似性度量 相似性(几何) 数学 度量(数据仓库) 熵(时间箭头) 面子(社会学概念) 距离测量 计算机科学 托普西斯 人工智能 数据挖掘 公理 模糊测度理论 模糊集 欧几里德距离 模糊逻辑 模式识别(心理学) 隶属函数 图像(数学) 社会科学 社会学 物理 几何学 量子力学 运筹学
作者
Anjali Patel,Subhankar Jana,Juthika Mahanta
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121491-121491 被引量:22
标识
DOI:10.1016/j.eswa.2023.121491
摘要

As a generalization of fuzzy sets, intuitionistic fuzzy sets (IFSs) are more capable of representing and addressing uncertainty in real-world problems. As a result, IFSs have been utilized in various areas of application. However, the distance and similarity measures between the two IFSs are still an open issue that has drawn much attention over the past few decades. Even though several intuitionistic fuzzy similarity measures (IFSMs) have been developed, a number of issues still exist, including counter-intuitive results, ‘the zero divisor problem,’ violation of similarity measure axioms, and being incompetent to detect minor changes in membership or non-membership. To overcome these shortcomings, a novel intuitionistic fuzzy similarity measure (IFSM) has been introduced in this study. Unlike existing measures, this method considered the global maximum and minimum of differences in memberships and differences in non-memberships, along with their individual differences, to construct an IFSM. Moreover, it has been shown that a convex combination of two similarity measures is also a similarity measure. Some numerical examples are employed to emphasize the advantages and strengths of the proposed method over existing ones. The suggested IFSM has been implemented on a few pattern classification issues to demonstrate its efficacy and a new face recognition method is also presented. Moreover, an entropy measure is introduced using the proposed IFSM, which is further used to construct the weights of attributes in the MADM method. Furthermore, the MADM technique, IF-E-TOPSIS, is constructed using the suggested IFSM and entropy measure. The effectiveness of this method is shown by utilizing it for software quality assessment, and the results are compared with existing ones to highlight the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助威武的酬海采纳,获得10
2秒前
打打应助lvben采纳,获得10
2秒前
小泡芙应助北大博士小谭采纳,获得20
2秒前
3秒前
元谷雪应助范范采纳,获得10
3秒前
汉小弟完成签到,获得积分10
3秒前
小田完成签到,获得积分10
4秒前
yoko完成签到,获得积分10
4秒前
受伤芝麻发布了新的文献求助20
4秒前
阳光宛完成签到,获得积分10
5秒前
5秒前
淡淡的若冰应助行歌采纳,获得10
5秒前
7秒前
天天快乐应助asd1576562308采纳,获得10
7秒前
QXS发布了新的文献求助10
7秒前
2301应助KK采纳,获得10
7秒前
7秒前
槐序完成签到,获得积分10
8秒前
思源应助至黎采纳,获得10
9秒前
小坏蛋完成签到,获得积分10
9秒前
10秒前
11秒前
tian完成签到,获得积分10
11秒前
科目三应助欢呼的念露采纳,获得10
11秒前
情怀应助阿童木采纳,获得10
13秒前
雷大帅完成签到 ,获得积分10
13秒前
14秒前
不筝完成签到,获得积分20
14秒前
15秒前
15秒前
16秒前
听白完成签到 ,获得积分10
17秒前
科研通AI2S应助wonder采纳,获得10
17秒前
漂亮钢铁侠应助yyjw采纳,获得15
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
小蘑菇应助帅气的绿凝采纳,获得10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247916
求助须知:如何正确求助?哪些是违规求助? 2891121
关于积分的说明 8266358
捐赠科研通 2559345
什么是DOI,文献DOI怎么找? 1388162
科研通“疑难数据库(出版商)”最低求助积分说明 650698
邀请新用户注册赠送积分活动 627590